CURRICULUM PROJECT

SUMMARY

Regents Physics
A Material Science extension to the Electricity and Magnetism unit of the Regents Physics curriculum will be described. This course is mandatory for all 11th grade students at Nardin Academy, although, typically, most schools offer the course as a senior elective.

Current Electricity
Topics will include:
- The discovery of the electron
- Scanning electron microscopes
- Television and computer monitors
- The light bulb
- Current electricity
- Series and Parallel Circuits

Process Skills
These will be cover the New York State Standards listed below:
- Analysis, Inquiry and Design (standard 1)
- Information Systems (standard 2)
- The Physical Setting (standard 4)
- Interconnectedness and Common Themes (standard 6)
- Interdisciplinary Problem Solving (standard 7)
Equipment for demonstrations, activities, and labs

FIRE!!
Steel wool
Wires with alligator clips attached
6- or 9-volt battery
Flame-resistant working surface

Making a light bulb
6-inch piece of braided picture wire, with individual wires separated
Play-doh
Paper clip
connecting wires
6- or 9-volt battery

Conservation of Energy
Miniature light bulbs in sockets
Connecting wires
Hand-cranked generators (2 per group) (“Genecons”)

Circuit Boards
(built during RET)
- 3 foot square sheet of plywood
- Miniature lamps mounted on velcro-backed blocks of wood
- voltmeter (velcro-backed)
- ammeter (velcro-backed)
- leads with banana plugs
- power supply

Lie Detector Test
Galvanometer for overhead projector
Two D-cells
Wires
Students will have prior knowledge of the following topics:
Forms of energy
Static electricity and transfer of charge
Unit of charge
Elementary charge
Conductors and insulators
Electric fields
Electric potential
Potential Difference

This project begins with:

1. The Discovery of the Electron (1857)
 - J.J. Thomson investigates mysterious glow in cathode ray tube
 - Proposes rays are negative “corpuscles” of which atoms are composed
 - Plum-pudding model of atom

Homework:
Bake plum pudding…or raisin or blueberry muffins
Internet research on Thomson
2. Invention of Television
- 14-year old Philo T. Farnsworth inspired while plowing field
- Visualized capturing and steering light line by line across a screen
- Used cathode ray tube (similar to that used by Thomson)
- Electrons boiled off cathode, beam scanned by magnetic field

http://www.howstuffworks.com/tv2.htm

3. Scanning Electron Microscopes
- Same technology of electron scanning as used in television
- Electromagnetic field acts as lens to focus electron beam
- FAR greater detail seen than with optical microscopes
- Due to tiny wavelength of electron *(Note: will learn in Modern Physics unit)*
- Electrons interact with sample *(Note: learnt in Modern Physics unit)*
- Interactions detected and turned into micrograph

Homework:
Internet research on SEM; bring in micrograph

4. The Incandescent Light Bulb
- Ability to light up the night had profound effect on civilization
- Light filament similar to cathode in cathode ray tube
- Invented by Thomas Edison (USA) and Sir Joseph Wilson Swan (U.K.)
- Energy transformations: electrical to heat to light
- Review concept of conservation of energy *(see Demo below)*
- Materials Science connection: what is used for filament? Why?
Demo: Conservation of Energy

Procedure
1. Attach light bulb to Genecon (hand-cranked generator)
2. Turn handle: lamp glows
3. Turn faster: lamp glows brighter
4. Disconnect lamp, connect two Genecons together
5. Turn handle of one: other handle rotates
6. Assign half of class to count number of times teacher turns handle. The rest of the students count number of times handle of second Genecon turns in response.

Observations
Fewer rotations of the attached Genecon

Conclusions
Work must be done to create electricity; energy seems to get lost; discrepancy due to friction; electricity has heating effect

Activity: FIRE!!

CAUTION: do not have anything flammable nearby.

Equipment: see list on p. 2

Procedure:
1. Connect a short length of steel wool to a 6- or 9-volt battery, using connecting wires with alligator clips.
2. Describe what happens.
3. Why do you think it happened?

Lab: The Light Bulb

Equipment: see list on p. 2

Procedure:
1. Form Play-Doh into 8 cm diameter disk to serve as lamp base
2. Wrap skinny metal wire tightly around paper clip to form filament
3. Remove filament and connect each end to 10 cm connecting wires, stripped at both ends, which serve as the filament supports
4. Push other end of supports through Play-Doh base
5. Cover with jelly jar
6. Connect supports to 9-volt battery
7. Describe and explain observations

Extensions (Inquiry based)
How could the filament burn brighter? Longer?
Try varying metal properties: thickness, length, type of material, etc.

5. **Current Electricity**

- Primarily talk about current through metals
- Model microstructure of metals, using marbles in water *(Internet search: micrographs of metal crystals)*
- Metallic bonding *(Chemistry review: “sea” of electrons)*
- Batteries and generators push electrons *(analogy: hair dryer pushes air): source of potential difference*
- Current defined here as rate of flow of electrons through conductor
- Resistance reduces current
- Examine factors affecting resistance
- LABS on: resistance vs. length
 and resistance vs. cross-sectional area
- Ohmic resistors and Ohm’s Law: relationship between V, I and R.
- LAB on dependence of current on potential difference
- Electrical power
- Calculate monthly cost of operating any particular electrical appliance
- EXTENSION: semiconductors *(Material Science connection)*
- EXTENSION: superconductivity *(Materials Science connection)*
Resistance in Metals

Resistance and Current are Inversely Proportional

Wire resistance depends on

- resistivity (ρ)
- length, L, of the wire
- cross-sectional area, A

$$R = \frac{\rho L}{A}$$

Analysis, Inquiry, Design

Resistivities at 20°C

<table>
<thead>
<tr>
<th>Material</th>
<th>Resistivity ($\Omega \cdot m$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>2.82×10^{-8}</td>
</tr>
<tr>
<td>Copper</td>
<td>1.72×10^{-8}</td>
</tr>
<tr>
<td>Gold</td>
<td>2.44×10^{-8}</td>
</tr>
<tr>
<td>Nichrome</td>
<td>$150. \times 10^{-8}$</td>
</tr>
<tr>
<td>Silver</td>
<td>1.59×10^{-8}</td>
</tr>
<tr>
<td>Tungsten</td>
<td>5.60×10^{-8}</td>
</tr>
</tbody>
</table>

Support for Cornell Center for Materials Research is provided through NSF Grant DMR-0079992
Copyright 2004 CCMR Educational Programs. All rights reserved.
Resistance in People

- Lie detector
- Safety precautions
- Body’s resistance

Address real-life problems

- Measure and compare body’s resistance, both dry and wet

Demo: Lie Detector Test
1. Wire volunteer in series with galvanometer (set up on overhead) and one or two D-cells; she must face away from galvanometer
2. Class-mates ask her questions and watch needle on galvanometer
3. Students research polygraphs

- Safety precautions around electricity
6. Circuits
- Definitions of series and parallel circuits
- Drawing schematic diagrams
- Equations for V, I and R in both series and parallel circuits
- Kirchhoff’s Laws for charge and voltage
- Household wiring: why parallel?
- Short circuits
- Overloading circuits
- Fuses, circuit breakers, and ground fault interrupters
- Use Circuit Board (*built during RET*) as indicated below
- Students design other labs making use of circuit board
- EXTENSIONS: research Integrated Circuits (*Materials Science connection*)

Activities with Circuit Board

Demonstrations:
- simple circuit, single lamp
- lamps in series or in parallel
- connecting ammeter and voltmeter

White Board Activities
- Connect four identical lamps so that two are bright and two are dim
- Connect resistors to give desired effective resistance
- Add fuse or potentiometer

Lab: Resistors in series and parallel

Support for Cornell Center for Materials Research is provided through NSF Grant DMR-0079992

Copyright 2004 CCMR Educational Programs. All rights reserved.
RESOURCES

- http://www.matse1.mse.uiuc.edu/~tw/home.html
- http://www.aip.org/history/electron/jjhome.htm
- http://www.howstuffworks.com/tv2.htm

ACKNOWLEDGEMENTS

My thanks for an unforgettable experience goes to:

- National Science Foundation, for supporting the CCMR Outreach program.
- My school, Nardin Academy, and especially my principal Rebecca Reeder and my colleague Sienie Kelley, for their encouragement.
- The wonderful folk in CCMR, especially Nev Singhota and Julianne Bauer-Hutchinson, Prof. Frank DiSalvo, Helene Schember, and the members of the RET selection committee.
- Facility managers Maura Weathers, Mick Thomas, John Hunt and John Sinnott, who gave us so much of their time and wisdom.
- Prof. Jeevak Parpia and his physics grad students, for devoting time and expertise in helping us build equipment.
- Pat Viele, Michael Skvarla, Robert Thorne, Alison Shull, Carl Franck, David Zax, Ernie Fontes, Bill Langin, Gil Toombes, Marcus Collins, Aaron Fleet, Deepak Shah, Eileen Tan, Ron Kemp, Michael Civay, and Zhitong Yang, for presentations, tours, and activities too varied to list.
✓ Information Technology experts Ivan Johnson, Sven Pederson, Dave Botsch, and Dan Danowski.
✓ And last but not least, my fellow RET-ers, Ranald Bleakley, Gerald Meccariello, Mona Steigerwald and Terre Trupp