Activity Sheet 1
Introduce the Experiment

Let’s see how the ball’s landing position depends on its release position on the ramp. There are positions marked on the ramp (in cm): 30, 50, 70, 90, 110. There are also distances ruled on the landing mat (in cm): 0-125.

1. Which release position will cause the ball to land the furthest away from the base of the ramp? Why do you think that?

2. Now release a ball from the top of the ramp and release one from the bottom. Which one landed further away? Were you right?
Activity Sheet 2
Develop Testing Procedure

3. Release a ball from a ramp position = 70cm and measure where the ball lands to the nearest cm.

 Landing Distance (cm) = ________

4. Describe how you measured its distance. Did you measure the front of the ball? Did you stand right over the ball?

 __
 __
 __

5. Release a ball from a ramp position = 70cm and measure where the ball lands to the nearest cm.

 Landing Distance (cm) = ________
 How reproducible is the landing distance? Does it land in the same place every time?

 __
 __
 __

6. What should you do if the ball rolls before stopping?

 __
 __
Activity Sheet 3
Collect Data – 70cm

7. Using the procedure you just made, release the ball from a ramp position = 70cm five times and record the results in the table below:

<table>
<thead>
<tr>
<th>Ramp Position</th>
<th>Landing Distance [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

8. Find the average landing distance:

First, find the total distance:

\[
\text{Total Distance} = \text{Landing Distance #1} + \text{Landing Distance #2} + \text{Landing Distance #3} + \text{Landing Distance #4} + \text{Landing Distance #5}
\]

Then, divide by the number of drops:

\[
\frac{\text{Total Distance}}{\text{Number of Drops}} = \text{Average Landing Distance}
\]

Do you think the Average Landing Distance value is a better or worse predictor of the landing distance than a single measurement? Why?

__

__

__
Activity Sheet 4
Collect Data

9. Practice releasing the ball from ramp position = 70cm until you can get a similar landing distance a few times in a row. Make notes on the procedure you use to release and measure the ball:

How did you place the ball on the ramp position?

How did you measure the ball on the landing mat?

10. Now you are ready to measure the other ramp positions.

<table>
<thead>
<tr>
<th>Ramp Position</th>
<th>Landing Distance [cm]</th>
<th>Total Distance [cm]</th>
<th>Average Landing Distance [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
11. Define the X-Axis:
The horizontal x-axis represents the variable you are changing. What variable are we changing in the Launch Tube experiment?

What is the smallest value of the variable we are changing? __________
What is the largest value of the variable we are changing? __________

12. Define the Y-Axis:
The vertical y-axis represents the response variable. What variable are we measuring in the Launch Tube experiment?

What is the smallest value of the response variable? __________
What is the largest value of the response variable? __________

13. Plot the average data in your table on the graph provided on the following page.

14. Draw a “best fit line” that connects the points on your graph.
Activity Sheet 6
Hit the Target!

15. Using your graph, predict the landing distance of the ball released from the yellow line.

__
__
__

16. How did you make this prediction?

__
__
__

17. Do the experiment. How many times did you hit the target out of 5? Why?

__
__
__