HomeResearch— IRG-2 Publications

— IRG-2 Publications

Structured Materials for Strong Light-Matter Interactions

(acknowledging DMR-1719875, through Spring 2023)

1 N. Mathur, A. Mukherjee, X. Gao, J. Luo, B. A. McCullian, T. Li, A. N. Vamivakas, and G. D. Fuchs, “Excited-state spin-resonance spectroscopy of V-B (-) defect centers in hexagonal boron nitride,” Nat. Commun. 13, 3233/1–7 (2022). http://dx.doi.org/10.1038/s41467-022-30772-z
2 Z. Zhang, Y. Hayashi, T. Tohei, A. Sakai, V. Protasenko, J. Singhal, H. Miyake, H. G. Xing, D. Jena, and Y. Cho, “Molecular beam homoepitaxy of N-polar AlN: Enabling role of aluminum-assisted surface cleaning,” Sci. Adv. 8, eabo6408/1-7 (2022). http://dx.doi.org/10.1126/sciadv.abo6408
3 R. Gladstein Gladstone, S. Dev, J. Allen, M. Allen, and G. Shvets, “Topological edge states of a long-range surface plasmon polariton at the telecommunication wavelength,” Opt. Lett. 47, 4532–4535 (2022). http://dx.doi.org/10.1364/OL.471442
4 A. Barman Ray, K. Liang, and A. N. Vamivakas, “Valley engineering electron-hole liquids in transition metal dichalcogenide monolayers,” Phys. Rev. B 106, 045206/1–5 (2022). http://dx.doi.org/10.1103/PhysRevB.106.045206
5 J. Singhal, R. Chaudhuri, A. Hickman, V. Protasenko, H. G. Xing, and D. Jena, “Toward AlGaN channel HEMTs on AlN: Polarization-induced 2DEGs in AlN/AlGaN/AlN heterostructures,” APL Materials 10, 111120/1–9 (2022). http://dx.doi.org/10.1063/5.0121195
6 L. van Deurzen, R. Page, V. Protasenko, K. Nomoto, H. (Grace) Xing, and D. Jena, “Optically pumped deep-UV multimode lasing in AlGaN double heterostructure grown by molecular beam homoepitaxy,” AIP Advances 12, 035023 (2022). http://dx.doi.org/10.1063/5.0085365
7 J. Z. Kaaret, G. Khalsa, and N. A. Benedek, “A strategy to identify materials exhibiting a large nonlinear phononics response: tuning the ultrafast structural response of LaAlO3 with pressure,” J. Phys.: Condens. Matter 34, 035402/1–9 (2022). http://dx.doi.org/10.1088/1361-648X/ac3038
8 S. Molesky, P. Chao, J. Mohajan, W. Reinhart, H. Chi, and A. W. Rodriguez, “T-operator limits on optical communication: Metaoptics, computation, and input-output transformations,” Phys. Rev. Research 4, 013020/1–15 (2022). http://dx.doi.org/10.1103/PhysRevResearch.4.013020
9 T. Peña, A. Azizimanesh, L. Qiu, A. Mukherjee, A. N. Vamivakas, and S. M. Wu, “Temperature and time stability of process-induced strain engineering on 2D materials,” Journal of Applied Physics 131, 024304/1–8 (2022). http://dx.doi.org/10.1063/5.0075917
10 G. Alvarez-Escalante, R. Page, R. Hu, H. G. Xing, D. Jena, and Z. Tian, “High thermal conductivity and ultrahigh thermal boundary conductance of homoepitaxial AlN thin films,” APL Materials 10, 011115/1–8 (2022). http://dx.doi.org/10.1063/5.0078155
11 G. Khalsa, N. A. Benedek, and J. Moses, “Ultrafast Control of Material Optical Properties via the Infrared Resonant Raman Effect,” Phys. Rev. X 11, 021067/1–16 (2021). http://dx.doi.org/10.1103/PhysRevX.11.021067
12 J. Encomendero, V. Protasenko, D. Jena, and H. G. Xing, “Influence of collector doping setback in the quantum transport characteristics of GaN/AlN resonant tunneling diodes,” Appl. Phys. Express 14, 122003/1–7 (2021). http://dx.doi.org/10.35848/1882-0786/ac345e
13 D. Dean, N. Flemens, D. Heberle, and J. Moses, “Widely tunable second harmonic amplification by noncollinear phase matching in bulk birefringent materials,” In P. G. Schunemann & K. L. Schepler (Eds.), Nonlinear Frequency Generation and Conversion: Materials and Devices XX (p. 116700G/1–10). Presented at the Nonlinear Frequency Generation and Conversion: Materials and Devices XX, Online Only, United States: SPIE (2021). http://dx.doi.org/10.1117/12.2584661
14 N. Flemens, N. Swenson, and J. Moses, “Efficient parametric amplification via simultaneous second harmonic generation,” Opt. Express 29, 30590/1–20 (2021). http://dx.doi.org/10.1364/OE.437864
15 F. Rana, O. Koksal, M. Jung, G. Shvets, and C. Manolatou, “Many-body theory of radiative lifetimes of exciton-trion superposition states in doped two-dimensional materials,” Phys. Rev. B 103, 035424/1–12 (2021). http://dx.doi.org/10.1103/PhysRevB.103.035424
16 M. Jung, Y. Yu, and G. Shvets, “Exact higher-order bulk-boundary correspondence of corner-localized states,” Phys. Rev. B 104, 195437/1–10 (2021). http://dx.doi.org/10.1103/PhysRevB.104.195437
17 F. Rana, O. Koksal, M. Jung, G. Shvets, A. N. Vamivakas, and C. Manolatou, “Exciton-Trion Polaritons in Doped Two-Dimensional Semiconductors,” Phys. Rev. Lett. 126, 127402/1–6 (2021). http://dx.doi.org/10.1103/PhysRevLett.126.127402
18 Y. Yu, M. Jung, and G. Shvets, “Zero-energy corner states in a non-Hermitian quadrupole insulator,” Phys. Rev. B 103, L041102/1-5 (2021). http://dx.doi.org/10.1103/PhysRevB.103.L041102
19 O. Koksal, M. Jung, C. Manolatou, A. N. Vamivakas, G. Shvets, and F. Rana, “Structure and dispersion of exciton-trion-polaritons in two-dimensional materials: Experiments and theory,” Phys. Rev. Research 3, 033064/1–10 (2021). http://dx.doi.org/10.1103/PhysRevResearch.3.033064
20 K. S. Olsson, J. Choe, M. Rodriguez-Vega, G. Khalsa, N. A. Benedek, J. He, B. Fang, J. Zhou, G. A. Fiete, and X. Li, “Spin-phonon interaction in yttrium iron garnet,” Phys. Rev. B 104, L020401/1-6 (2021). http://dx.doi.org/10.1103/PhysRevB.104.L020401
21 S. Mallick, G. Khalsa, J. Z. Kaaret, W. Zhang, M. Batuk, A. S. Gibbs, J. Hadermann, P. S. Halasyamani, N. A. Benedek, and M. A. Hayward, “The influence of the 6s2 configuration of Bi3+ on the structures of A′BiNb2O7 (A′ = Rb, Na, Li) layered perovskite oxides,” Dalton Trans. 50, 15359–15369 (2021). http://dx.doi.org/10.1039/D1DT02974F
22 R. Chaudhuri, Z. Chen, D. A. Muller, H. G. Xing, and D. Jena, “High-conductivity polarization-induced 2D hole gases in undoped GaN/AlN heterojunctions enabled by impurity blocking layers,” Journal of Applied Physics 130, 025703/1–8 (2021). http://dx.doi.org/10.1063/5.0054321
23 J. Casamento, H. Lee, C. S. Chang, M. F. Besser, T. Maeda, D. A. Muller, H. (Grace) Xing, and D. Jena, “Strong effect of scandium source purity on chemical and electronic properties of epitaxial ScxAl1 −xN/GaN heterostructures,” APL Materials 9, 091106/1–10 (2021). http://dx.doi.org/10.1063/5.0054522
24 M. R. Shcherbakov, H. Zhang, M. Tripepi, G. Sartorello, N. Talisa, A. AlShafey, Z. Fan, J. Twardowski, L. A. Krivitsky, A. I. Kuznetsov, E. Chowdhury, and G. Shvets, “Generation of even and odd high harmonics in resonant metasurfaces using single and multiple ultra-intense laser pulses,” Nat Commun 12, 4185/1–6 (2021). http://dx.doi.org/10.1038/s41467-021-24450-9
25 M. R. Shcherbakov, G. Sartorello, M. Tripepi, A. AlShafey, M. Bosch, N. Talisa, E. Chowdhury, and G. Shvets, “Laser nanostructuring by tailored free carrier generation in designer semiconductor metasurfaces,” In Conference on Lasers and Electro-Optics (p. SM3B.1/1-2). Presented at the CLEO: Science and Innovations, San Jose, California: OSA (2021). http://dx.doi.org/10.1364/CLEO_SI.2021.SM3B.1
26 R. Lemasters, M. R. Shcherbakov, G. Yang, J. Song, T. Lian, H. Harutyunyan, and G. Shvets, “Deep Optical Switching on Subpicosecond Timescales in an Amorphous Ge Metamaterial,” Adv. Optical Mater. 9, 2100240/1–9 (2021). http://dx.doi.org/10.1002/adom.202100240
27 L. Xiong, Y. Li, M. Jung, C. Forsythe, S. Zhang, A. S. McLeod, Y. Dong, S. Liu, F. L. Ruta, C. Li, K. Watanabe, T. Taniguchi, M. M. Fogler, J. H. Edgar, G. Shvets, C. R. Dean, and D. N. Basov, “Programmable Bloch polaritons in graphene,” Sci. Adv. 7, eabe8087/1-7 (2021). http://dx.doi.org/10.1126/sciadv.abe8087
28 Z. Zhang, J. Encomendero, R. Chaudhuri, Y. Cho, V. Protasenko, K. Nomoto, K. Lee, M. Toita, H. G. Xing, and D. Jena, “Polarization-induced 2D hole gases in pseudomorphic undoped GaN/AlN heterostructures on single-crystal AlN substrates,” Appl. Phys. Lett. 119, 162104/1–7 (2021). http://dx.doi.org/10.1063/5.0066072
29 L. van Deurzen, S. Bharadwaj, K. Lee, V. Protasenko, H. Turski, H. (Grace) Xing, and D. Jena, “Enhanced efficiency in bottom tunnel junction InGaN blue LEDs,” In M. Strassburg, J. K. Kim, & M. R. Krames (Eds.), Light-Emitting Devices, Materials, and Applications XXV (pp. 1–7). Presented at the Light-Emitting Devices, Materials, and Applications XXV, Online Only, United States: SPIE (2021). http://dx.doi.org/10.1117/12.2582439
30 K. Lee, R. Page, V. Protasenko, L. J. Schowalter, M. Toita, H. G. Xing, and D. Jena, “MBE growth and donor doping of coherent ultrawide bandgap AlGaN alloy layers on single-crystal AlN substrates,” Appl. Phys. Lett. 118, 092101/1–9 (2021). http://dx.doi.org/10.1063/5.0037079
31 Y. Cho, C. S. Chang, K. Lee, M. Gong, K. Nomoto, M. Toita, L. J. Schowalter, D. A. Muller, D. Jena, and H. G. Xing, “Molecular beam homoepitaxy on bulk AlN enabled by aluminum-assisted surface cleaning,” Appl. Phys. Lett. 116, 172106 (2020). http://dx.doi.org/10.1063/1.5143968
32 K. Lee, S. Bharadwaj, Y.-T. Shao, L. van Deurzen, V. Protasenko, D. A. Muller, H. G. Xing, and D. Jena, “Light-emitting diodes with AlN polarization-induced buried tunnel junctions: A second look,” Appl. Phys. Lett. 117, 061104/1–6 (2020). http://dx.doi.org/10.1063/5.0015097
33 J. Encomendero, V. Protasenko, F. Rana, D. Jena, and H. G. Xing, “Fighting Broken Symmetry with Doping: Toward Polar Resonant Tunneling Diodes with Symmetric Characteristics,” Phys. Rev. Applied 13, 034048/1–10 (2020). http://dx.doi.org/10.1103/PhysRevApplied.13.034048
34 Y. Li, Y. Yu, F. Liu, B. Zhang, and G. Shvets, “Topology-Controlled Photonic Cavity Based on the Near-Conservation of the Valley Degree of Freedom,” Phys. Rev. Lett. 125, 213902 (2020). http://dx.doi.org/10.1103/PhysRevLett.125.213902
35 M. R. Shcherbakov, R. Lemasters, J. Song, P. Shafirin, T. Lian, H. Harutyunyan, and G. Shvets, “Negative Extinction and Broadband Light-matter Interactions in High-Q Time-variant Metasurfaces,” In Conference on Lasers and Electro-Optics (p. FTh4Q.1). Presented at the CLEO: QELS_Fundamental Science, Washington, DC: OSA (2020). http://dx.doi.org/10.1364/CLEO_QELS.2020.FTh4Q.1
36 M. Jung, R. G. Gladstone, and G. Shvets, “Nanopolaritonic second-order topological insulator based on graphene plasmons,” Adv. Photon. 2, 046003/1–8 (2020). http://dx.doi.org/10.1117/1.AP.2.4.046003
37 A. Mukherjee, C. Chakraborty, L. Qiu, and A. N. Vamivakas, “Electric field tuning of strain-induced quantum emitters in WSe2,” AIP Advances 10, 075310/1–6 (2020). http://dx.doi.org/10.1063/5.0010395
38 Y. Cho, J. Encomendero, S.-T. Ho, H. G. Xing, and D. Jena, “N-polar GaN/AlN resonant tunneling diodes,” Appl. Phys. Lett. 117, 143501/1–7 (2020). http://dx.doi.org/10.1063/5.0022143
39 K. Lee, Y. Cho, L. J. Schowalter, M. Toita, H. G. Xing, and D. Jena, “Surface control and MBE growth diagram for homoepitaxy on single-crystal AlN substrates,” Appl. Phys. Lett. 116, 262102 (2020). http://dx.doi.org/10.1063/5.0010813
40 A. Singh, O. Koksal, N. Tanen, J. McCandless, D. Jena, H. (Grace) Xing, H. Peelaers, and F. Rana, “Intra- and inter-conduction band optical absorption processes in β-Ga2O3,” Appl. Phys. Lett. 117, 072103/1–6 (2020). http://dx.doi.org/10.1063/5.0016341
41 J. Moses, N. Flemens, and X. Ding, “Back-conversion suppressed parametric frequency conversion for ultrawide bandwidth and ultrahigh efficiency devices,” In P. G. Schunemann & K. L. Schepler (Eds.), Nonlinear Frequency Generation and Conversion: Materials and Devices XIX (pp. 1–10). Presented at the Nonlinear Frequency Generation and Conversion: Materials and Devices XIX, San Francisco, United States: SPIE (2020). http://dx.doi.org/10.1117/12.2548361
42 R. Chaudhuri, S. J. Bader, Z. Chen, D. Muller, H. G. Xing, and D. Jena, “MBE Growth of Large‐Area GaN/AlN 2‐dimensional Hole Gas Heterostructures,” Phys. Status Solidi B 1900567/1–5 (2020). http://dx.doi.org/10.1002/pssb.201900567
43 F. Rana, O. Koksal, and C. Manolatou, “Many-body theory of the optical conductivity of excitons and trions in two-dimensional materials,” Phys. Rev. B 102, 085304 (2020). http://dx.doi.org/10.1103/PhysRevB.102.085304
44 Sean Molesky, P. Chao, and A. W. Rodriguez, “Hierarchical mean-field T operator bounds on electromagnetic scattering: Upper bounds on near-field radiative Purcell enhancement,” Phys. Rev. Research 2, 043398/1–12 (2020). http://dx.doi.org/10.1103/PhysRevResearch.2.043398
45 P. S. Venkataram, R. Messina, J. C. Cuevas, P. Ben-Abdallah, and A. W. Rodriguez, “Mechanical relations between conductive and radiative heat transfer,” Phys. Rev. B 102, 085404 (2020). http://dx.doi.org/10.1103/PhysRevB.102.085404
46 P. S. Venkataram, J. Hermann, A. Tkatchenko, and A. W. Rodriguez, “Fluctuational electrodynamics in atomic and macroscopic systems: van der Waals interactions and radiative heat transfer,” Phys. Rev. B 102, 085403 (2020). http://dx.doi.org/10.1103/PhysRevB.102.085403
47 P. S. Venkataram, S. Molesky, P. Chao, and A. W. Rodriguez, “Fundamental limits to attractive and repulsive Casimir-Polder forces,” Phys. Rev. A 101, 052115 (2020). http://dx.doi.org/10.1103/PhysRevA.101.052115
48 C. Khandekar, L. Yang, A. W. Rodriguez, and Z. Jacob, “Quantum nonlinear mixing of thermal photons to surpass the blackbody limit,” Opt. Express 28, 2045 (2020). http://dx.doi.org/10.1364/OE.377278
49 Sean Molesky, P. Chao, W. Jin, and A. W. Rodriguez, “Global T operator bounds on electromagnetic scattering: Upper bounds on far-field cross sections,” Phys. Rev. Research 2, 033172 (2020). http://dx.doi.org/10.1103/PhysRevResearch.2.033172
50 Sean Molesky, P. S. Venkataram, W. Jin, and A. W. Rodriguez, “Fundamental limits to radiative heat transfer: Theory,” Phys. Rev. B 101, 035408/1–12 (2020). http://dx.doi.org/10.1103/PhysRevB.101.035408
51 P. S. Venkataram, S. Molesky, W. Jin, and A. W. Rodriguez, “Fundamental Limits to Radiative Heat Transfer: The Limited Role of Nanostructuring in the Near-Field,” Phys. Rev. Lett. 124, 013904/1–6 (2020). http://dx.doi.org/10.1103/PhysRevLett.124.013904
52 A. Mukherjee, K. Shayan, L. Li, J. Shan, K. F. Mak, and A. N. Vamivakas, “Observation of site-controlled localized charged excitons in CrI3/WSe2 heterostructures,” Nature Commun. 11, 5502/1–8 (2020). http://dx.doi.org/10.1038/s41467-020-19262-2
53 R. S. Daveau, T. Vandekerckhove, A. Mukherjee, Z. Wang, J. Shan, K. F. Mak, A. N. Vamivakas, and G. D. Fuchs, “Spectral and spatial isolation of single tungsten diselenide quantum emitters using hexagonal boron nitride wrinkles,” APL Photonics 5, 096105 (2020). http://dx.doi.org/10.1063/5.0013825
54 M. K. Kroychuk, A. S. Shorokhov, D. F. Yagudin, D. A. Shilkin, D. A. Smirnova, I. Volkovskaya, M. R. Shcherbakov, G. Shvets, and A. A. Fedyanin, “Enhanced Nonlinear Light Generation in Oligomers of Silicon Nanoparticles under Vector Beam Illumination,” Nano Lett. 20, 3471–3477 (2020). http://dx.doi.org/10.1021/acs.nanolett.0c00393
55 S. H. Huang, R. Delgado, and G. B. Shvets, “Metasurface-enhanced infrared spectroscopy for continuously monitoring the effect of cholesterol depletion in live cells,” In W. Petrich & Z. Huang (Eds.), Biomedical Vibrational Spectroscopy 2020: Advances in Research and Industry (pp. 1–24). Presented at the Biomedical Vibrational Spectroscopy 2020: Advances in Research and Industry, San Francisco, United States: SPIE (2020). http://dx.doi.org/10.1117/12.2547141
56 G. Muziol, M. Hajdel, H. Turski, K. Nomoto, M. Siekacz, K. Nowakowski-Szkudlarek, M. Żak, D. Jena, H. G. Xing, P. Perlin, and C. Skierbiszewski, “Distributed-feedback blue laser diode utilizing a tunnel junction grown by plasma-assisted molecular beam epitaxy,” Opt. Express 28, 35321/1–9 (2020). http://dx.doi.org/10.1364/OE.405994
57 S. Bharadwaj, K. Lee, K. Nomoto, A. Hickman, L. van Deurzen, V. Protasenko, H. (Grace) Xing, and D. Jena, “Bottom tunnel junction blue light-emitting field-effect transistors,” Appl. Phys. Lett. 117, 031107/1–6 (2020). http://dx.doi.org/10.1063/5.0009430
58 H. Turski, S. Bharadwaj, M. Siekacz, G. Muziol, M. Chlipala, M. Zak, M. Hajdel, K. Nowakowski-Szkudlarek, S. Stanczyk, H. Xing, D. Jena, and C. Skierbiszewski, “Monolithically p-down nitride laser diodes and LEDs obtained by MBE using buried tunnel junction design,” In H. Morkoç, H. Fujioka, & U. T. Schwarz (Eds.), Gallium Nitride Materials and Devices XV (p. 34). Presented at the Gallium Nitride Materials and Devices XV, San Francisco, United States: SPIE (2020). http://dx.doi.org/10.1117/12.2548996
59 S. Bharadwaj, J. Miller, K. Lee, J. Lederman, M. Siekacz, H. (Grace) Xing, D. Jena, C. Skierbiszewski, and H. Turski, “Enhanced injection efficiency and light output in bottom tunnel-junction light-emitting diodes,” Opt. Express 28, 4489–4500 (2020). http://dx.doi.org/10.1364/OE.384021
60 H. Turski, M. Siekacz, G. Muzioł, M. Hajdel, S. Stańczyk, M. Żak, M. Chlipała, C. Skierbiszewski, S. Bharadwaj, H. G. Xing, and D. Jena, “Nitride LEDs and Lasers with Buried Tunnel Junctions,” ECS J. Solid State Sci. Technol. 9, 015018/1–4 (2020). http://dx.doi.org/10.1149/2.0412001JSS
61 P. S. Venkataram, S. Molesky, J. C. Cuevas, and A. W. Rodriguez, “Channel-based algebraic limits to conductive heat transfer,” Phys. Rev. B 102, 085405 (2020). http://dx.doi.org/10.1103/PhysRevB.102.085405
62 K. Konthasinghe, C. Chakraborty, N. Mathur, L. Qiu, A. Mukherjee, G. D. Fuchs, and A. N. Vamivakas, “Rabi oscillations and resonance fluorescence from a single hexagonal boron nitride quantum emitter,” Optica 6, 542–548 (2019). http://dx.doi.org/10.1364/OPTICA.6.000542
63 C. Chakraborty, N. R. Jungwirth, G. D. Fuchs, and A. N. Vamivakas, “Electrical manipulation of the fine-structure splitting of WSe2 quantum emitters,” Phys. Rev. B 99, 045308/1–5 (2019). http://dx.doi.org/10.1103/PhysRevB.99.045308
64 M. R. Shcherbakov, W.-Z. Chang, J. Moses, and G. B. Shvets, “Enhancing harmonics generation by time-variant metasurfaces (Conference Presentation),” In A. Adibi, S.-Y. Lin, & A. Scherer (Eds.), Photonic and Phononic Properties of Engineered Nanostructures IX (p. 109270f/1–6). Presented at the Photonic and Phononic Properties of Engineered Nanostructures IX, San Francisco, United States: SPIE (2019). http://dx.doi.org/10.1117/12.2517689
65 J. Encomendero, V. Protasenko, B. Sensale-Rodriguez, P. Fay, F. Rana, D. Jena, and H. G. Xing, “Broken Symmetry Effects due to Polarization on Resonant Tunneling Transport in Double-Barrier Nitride Heterostructures,” Phys. Rev. Applied 11, 034032/1–11 (2019). http://dx.doi.org/10.1103/PhysRevApplied.11.034032
66 R. G. Gladstone, M. Jung, Y. Han, and G. Shvets, “Photonic emulation of two-dimensional materials with antiferromagnetic order,” Phys. Rev. B 100, 245417/1–12 (2019). http://dx.doi.org/10.1103/PhysRevB.100.245417
67 C. Chakraborty, A. Mukherjee, L. Qiu, and A. N. Vamivakas, “Electrically tunable valley polarization and valley coherence in monolayer WSe2 embedded in a van der Waals heterostructure,” Optical Materials Express 9, 1479/1–9 (2019). http://dx.doi.org/10.1364/OME.9.001479
68 S. Poncé, D. Jena, and F. Giustino, “Hole mobility of strained GaN from first principles,” Phys. Rev. B 100, 085204/1–16 (2019). http://dx.doi.org/10.1103/PhysRevB.100.085204
69 S. Poncé, D. Jena, and F. Giustino, “Route to High Hole Mobility in GaN via Reversal of Crystal-Field Splitting,” Phys. Rev. Lett. 123, 096602/1–6 (2019). http://dx.doi.org/10.1103/PhysRevLett.123.096602
70 R. Chaudhuri, S. J. Bader, Z. Chen, D. A. Muller, H. G. Xing, and D. Jena, “A polarization-induced 2D hole gas in undoped gallium nitride quantum wells,” Science 365, 1454–1457 (2019). http://dx.doi.org/10.1126/science.aau8623
71 Sean Molesky, W. Jin, P. S. Venkataram, and A. W. Rodriguez, “T Operator Bounds on Angle-Integrated Absorption and Thermal Radiation for Arbitrary Objects,” Phys. Rev. Lett. 123, 257401/1–6 (2019). http://dx.doi.org/10.1103/PhysRevLett.123.257401
72 P. S. Venkataram, J. Hermann, T. J. Vongkovit, A. Tkatchenko, and A. W. Rodriguez, “Impact of nuclear vibrations on van der Waals and Casimir interactions at zero and finite temperature,” Sci. Adv. 5, 1–14 (2019). http://dx.doi.org/10.1126/sciadv.aaw0456
73 M. R. Shcherbakov, P. Shafirin, and G. Shvets, “Overcoming the efficiency-bandwidth tradeoff for optical harmonics generation using nonlinear time-variant resonators,” Phys. Rev. A 100, 063847/1–8 (2019). http://dx.doi.org/10.1103/PhysRevA.100.063847
74 M. K. Kroychuk, D. F. Yagudin, A. S. Shorokhov, D. A. Smirnova, I. I. Volkovskaya, M. R. Shcherbakov, G. Shvets, Y. S. Kivshar, and A. A. Fedyanin, “Tailored Nonlinear Anisotropy in Mie‐Resonant Dielectric Oligomers,” Adv. Optical Mater. 7, 1900447/1–7 (2019). http://dx.doi.org/10.1002/adom.201900447
75 M. R. Shcherbakov, R. Lemasters, Z. Fan, J. Song, T. Lian, H. Harutyunyan, and G. Shvets, “Time-variant metasurfaces enable tunable spectral bands of negative extinction,” Optica 6, 1441–1442 (2019). http://dx.doi.org/10.1364/OPTICA.6.001441
76 M. R. Shcherbakov, K. Werner, Z. Fan, N. Talisa, E. Chowdhury, and G. Shvets, “Photon acceleration and tunable broadband harmonics generation in nonlinear time-dependent metasurfaces,” Nature Commun. 10, s41467/1-9 (2019). http://dx.doi.org/10.1038/s41467-019-09313-8
77 L. Qiu, C. Chakraborty, S. Dhara, and A. N. Vamivakas, “Room-temperature valley coherence in a polaritonic system,” Nature Commun. 10, 1513/1–5 (2019). http://dx.doi.org/10.1038/s41467-019-09490-6
78 R. Page, J. Casamento, Y. Cho, S. Rouvimov, H. G. Xing, and D. Jena, “Rotationally aligned hexagonal boron nitride on sapphire by high-temperature molecular beam epitaxy,” Phys. Rev. Materials 3, 064001/1–6 (2019). http://dx.doi.org/10.1103/PhysRevMaterials.3.064001
79 S. Bharadwaj, S. M. Islam, K. Nomoto, V. Protasenko, A. Chaney, H. (Grace) Xing, and D. Jena, “Bandgap narrowing and Mott transition in Si-doped Al0.7Ga0.3N,” Applied Physics Letters 114, 113501/1–6 (2019). http://dx.doi.org/10.1063/1.5086052
80 G. Xing, J. Encomendero, and D. Jena, “New physics in GaN resonant tunneling diodes,” In H. Morkoç, H. Fujioka, & U. T. Schwarz (Eds.), Gallium Nitride Materials and Devices XIV (p. 34). Presented at the Gallium Nitride Materials and Devices XIV, San Francisco, United States: SPIE (2019). http://dx.doi.org/10.1117/12.2512638
81 T. Zhu, G. Khalsa, D. M. Havas, A. S. Gibbs, W. Zhang, P. S. Halasyamani, N. A. Benedek, and M. A. Hayward, “Cation Exchange as a Mechanism To Engineer Polarity in Layered Perovskites,” Chem. Mater. 30, 8915–8924 (2018). http://dx.doi.org/10.1021/acs.chemmater.8b04136
82 G. Khalsa and N. A. Benedek, “Ultrafast optically induced ferromagnetic/anti-ferromagnetic phase transition in GdTiO3 from first principles,” npj Quantum Materials 3, 1–8 (2018). http://dx.doi.org/10.1038/s41535-018-0086-3
83 R. Yan, G. Khalsa, S. Vishwanath, Y. Han, J. Wright, S. Rouvimov, D. S. Katzer, N. Nepal, B. P. Downey, D. A. Muller, H. G. Xing, D. J. Meyer, and D. Jena, “GaN/NbN epitaxial semiconductor/superconductor heterostructures,” Nature 555, 183–189 (2018). http://dx.doi.org/10.1038/nature25768
84 C. Khandekar, R. Messina, and A. W. Rodriguez, “Near-field refrigeration and tunable heat exchange through four-wave mixing,” AIP Advances 8, 055029/1–9 (2018). http://dx.doi.org/10.1063/1.5018734
85 C. Sitawarin, W. Jin, Z. Lin, and A. W. Rodriguez, “Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion [Invited],” Photonics Research 6, B82/1-8 (2018). http://dx.doi.org/10.1364/PRJ.6.000B82
86 M. Jung, Z. Fan, and G. Shvets, “Midinfrared Plasmonic Valleytronics in Metagate-Tuned Graphene,” Phys. Rev. Lett. 121, 086807/1–6 (2018). http://dx.doi.org/10.1103/PhysRevLett.121.086807
Powered By: AcademicsWeb