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Understanding FT-IR Data Processing

Part 1: Data Acquisition and Fourier Transformation

1 Introduction

Although infrared spectroscopy is one of
the most powerful tocls available to the
analytical chemist and is routinely used in
research and application labs and for
process control, the most advanced form
of |R-spectroscopy, Fourier Transform
Infrared Spectroscopy (FT-IR), still holds
some secrets for the chemist who is
trained to work with conventional grating
instrurments. One reason is surely that the
generation of the spectral trace is not
straightforwardly controlled” by setting
appropriate knobs controliing slit widths,
scanning speed, etc. but involves a certaln
amount of mathematical manipulations
such as Fourler transformation, phase
correction, and apodization, which may
introduce a barrier to understanding the
FTIR technique. Despile this difficulty,
moderately and low priced FT-IR
instruments are now entering even routine
labs, because of their clear advaniages
compared to grating spectrometers. Even
in lower priced FT-IR spectrometers, a
laboratory, or dedicated computer is the
most important component apart from the
optics. As the guality of its software
directly determines the accuracy of the
spectra, it is recommended that the user
be familiar with the principles of FT-IR
data collection and manipulation.
Unfortunately, there still seems to be a
lack of literature on FT-IR at an
introductory level. Therefare, this series of
articles attempts to compile the essential
facts in a, hopefully, lucid way without {oo
many mathematical and technical details
and thus pravide an insight into the
interrelation between FT-IR hardware, the
data manipulations involved, and the final
spectrum.
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Bruker Analytische Meftechnik GmbH,
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This is the first of a series of three articles, describing the data acquisition and
mathematics performed by the minicomputer inside a FT-IR spectrometer.
Special emphasis is placed on operations and artifacts relating to the Fourier
transformation and on methods dealing directly with the Interferogram. Part 1
covers the measurement process and the conversion of the raw data (the
Interferogram} into a spectrum.

Figure 1: A) Schematics of a Michelson interferometer, S: source, D: detector,
Ml: fixed mirror, M2: movable mirror, X; mirror displacement, B} Signal
measured by detector D. This is the Interferogram. C) Interference pattern of a
laser source. lts zero crossings define the positions where the interferogram is
sampled (dashed lines).




2 Raw Data Generation

The essential piece of optical hardware in
a FT-IR spectrometer  is the
interferometer. The basic scheme of an
idealized Michelson interferometer Is
shown in Figure 1,

Infrared light emitted by a source (Globar,
metal wire, Nernst bar...) is directed to a
device called the beam splitter, because it
ideally allows half of the light to pass
through while it reflects the other half.

The reflected part of the beam travels to
the fixed mirror M1 through a distance L,
is reflected there and hits the beam splitter
again after a total path length of 2L. The
same happens to the transmitied part of
the beam. However, as the reflecting mir-
ror M2 for this interferometer arm is not
fixed at the same position L but can be
moved very precisely back and forth
around L by a distance x, the total path
length of this beam Iis accordingly
2+ (L =x). Thus when the two halves of
the beam recombine again on the beam
splitter they exhibit a path length dif-
ference or optical retardation of 2*x, i.e,
the partial beams are spatially coherent
and will interfere when they recombine.

The beam leaving the interferometer is
passed through the sample compartment
and is finally focused on the detector D.
The guantity actually measured by the de-
tector is thus the intensity f(x) of the
combined IR beams as a function of the
moving mirror displacement x, the
so-called interferogram (Figure 1 B).

The interference pattern as seen by the
detector is shown in Figure 2A for the
case of a single, sharp spectral line. The
interferometer produces and recombines
two wave trains with a relative phase
difference, depending on the mirror
displacement. These partia! waves
interfere constructively, yielding maximum
detector signal, if their optical retardation
is an exact multiple of the wavelength A,
ie. if

rx=p*d (n=012..) (1)
Minimum detector signal and destructive
interference occur if 2+x is an odd
multiple of A/2. The complete

dependence of [(x) on x is given by a
cosine function:

H{x0 = §(v)*cos(2mex) (2)

Where we have introduced the
wavenumber v=1/4, which is more

common in FT-IR spectroscopy, and S(v)

is the intensity of the monochromatic line
located at wavenumber v .

Equation (2) is exiremely useful for
practical measurements, because it allows
very precise tracking of the movable
murror. in fact, all modem FT-IR
spectrometers use the interference pattern
of the monochromatic light of a He-Ne
laser to control the change in optical path
difference. This is the reason why we in-
cluded the interference pattern of the
He-Ne laser in Figure 1C. This
demonstrates how the IR interferogram is
digitized precisely at the zero crossings of
the laser interferogram. The accuracy of
the sample spacing Ax between two zero
crossings Jjs solely determined by the
precision of the laser wavelength itself. As
the sample spacing Av in the spectrum is
inversely proportional to Ax, the error in
Av is of the same order as in Ax. Thus,
FT-IR spectrometers have a built-in
wavenumber calibration of high precision
(practicaily about 0.01 cm™. This
advantage is known as the Connes
advantage.

3 Advantages of FT-IR

Besides its high wavenumber accuracy,
FT-IR has other features, which make it
superior to conventional [R.

The so-called Jacquinot or throughput ad-
vantage arises from the fact that the circu-
lar apertures used in FT-IR spectrometers
have a larger area than the linear slits
used in grating spectrometers, thus
enabling higher throughput of radiation.

In conventional spectrometers the spec-
tum S(v) is measured directly by
recording the intensity at different
monochromator settings +, one v after
the other. In FT-IR, all frequencies
emanating from the IR source impinge
simultaneously on the detector. This
accounts for the so-called muiltiplex or
Fellget advantage.

The measuring time in FT-IR is the time
needed to move mirror M2 over a distance
proportional to the desired resolution. As
the mirror can be moved very fast, com-
plete spectra can be measured in fractions
of & second. This is essential, e.g. in the
coupling of FT-IR to capillary GC, where a
time resolution of 10 - 20 spectra per sec-

ond at a resolution of 8 cm™ is often ne-
cessary [1].

Finally, the
advantages
interferometers
resolving
instruments.

Fellget and Jacquinot
permit  construction of
having much higher
power than  dispersive

Further advantages can be found in the IR
literature, e.g. in the book by Bell [2].

4 Fourier Transformation

Data acquisition yields the digitized inter-
ferogram {{x)), which must be converted
into @ spectrum by means of a mathemat-
ical operation called Fourier transforma-
tion (FT). Generally, the FT determines
the frequency components making up a
continuous waveform.  However, if the
waveform (the interferogram) is sampled
and consists of N discrete, eqguidistant
points, one has to use the discrete version
of the FT, i.e. discrete FT (DFT):

N-l
S(AV) = Y I (nix)exp(iZmntt! N) 3)
n=0

Where the continuous variables x, v
have been replaced by n*Ax and k+Av,

respectively. The spacing Av in the
spectrum is related to Ax by
Av=1/{N*Ax) {4)

The DFT expresses a given function as a
sum of sine and cosine functions. The re-
sulling new function S(k*Av) then
consists of the coefficients {called the
Fourier coefficients) necessary for such a
development. Alternatively, if the set
S(k =+ Av) of Fourier coefficients is known,
one can easily reconstruct  the
interferogram f(n*Ax) by combining all
cosines and sines multiplied by their
Fourier coefficients S(k+Av) and dividing
the whole sum by the number of points
N. This is stated by the formula for the
inverse DFT (IDFT):

N
T+ Ax) = (1/ N) 2 S(k » Av)exp{—i2m #nk [ N}
n=0
(5}

The summation {5) is best illustrated in the
simple case of a spectrum with one or two
monochromatic lines, as shown in Figures
2A and 2B. For a limited number of func-
tions like the Lorentzian in Figure 2C, the
corresponding FT is known analytically
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and can be looked up from an integral
table. However, in the general case of
measured data, the DFT and IDFT must
be calculated numerically by a computer.

Although the precise shape of a specirum
cannot be determined from the interfer-
ogram without a computer, it may never-
theless be helpful to know two simple trad-
ing rules for an approximate

description of the correspondence
between /{n+Ax) and S(k+*Aw).

From Figure 2C we can, e.g., extract the
general qualitative rule that a finite
spectral line width (as is always present
for real samples) is due to damping in the
interfercgram: The broader the line the
stronger the damping.

Comparing the widths at half height
{(WHH) of [{n+Ax) and S(k+Av), reveals

ancther related rule; The WHH's of a
‘hump-like' function and ils FT are
inversely proportional. This rule explains
why in Figure 20D the interferogram due to
a broad band source shows a very sharp
peak around the zero path difference posi-
tion x =0, while the wings of the inter-
ferogram, which contain most of the useful
spectral information, have a very low
amplitude, This illustrates the need for
ADC's of high dynamic range in FT-IR
measurements,  Typically, FT-IR spec-
trometers are equipped with 15- or 16-bit
ADC's.

For n=0, the exponential in (b) is equal
to unity. For this case, expression (5)
states, that the intensity 7(0) measurad at
the interferogram centerburst is equal to
the sum over all N spectral intensities
divided by . This means the height of

the center burst i1s a measure of the
average spectral intensity.

In practice, eq. (3) Is seldom used directly
because it is highly redundant. [nstead a
number of so-called fast Fourier trans-
forms (FTT's) are In use, the most
common of which is the Cooley-Tukey
algorithm. The aim of these FTT's is to
reduce the number of complex
multiplications and sine- and cosine
calculations appreciably, leading to a
substantial saving of computer time. The
(small} price paid for the speed is that the
number of interferogram points & cannot
be chosen at will, but depends on the
algorithm. In the case of the Cooley-
Tukey algorithm, which is used by most
FT-IR manufacturers with slight modifica-
tions, ¥ must be a power of two. For this
reasan and from relation {4} it follows that
spectra taken with laser-controlled FT-IR
spectrometers will show a sample spacing
of Av = m«laser wavenumber/2+=N .

5 Final Transmittance
Spectrum

To obtain a transmittance spectrum, the
three steps shown in Figures 3 A, B, C are
necessary (this example was taken from a
GC run):

« An interferogram measured without
sample in the optical path is Fourier
transformed and yields the so-called
single channei reference spectrum
R(v) of Fig. 3A.

+  An interferagram with a sample in the
optical path is measured and Fourier
transformed. This yields the se-called
single channel sample spactrum S(v)

of Fig. 3B. S(v)} looks similar to
R(v) but has less intensity at those

wavenumbers where the sample
absorbs,

« The final transmittance spectrum
T{(v} is defined as the ratio
T} = 8{v}/ R{v}. This is shown in
Fig. 3C.

Onece the transmittance spectrum has
been obtained, further data processing re-
sembles that of digitized spectra from dis-
persive instruments.




=

3

2.5 8.5 ; 185,98 4
A) B)
= C)
//ﬂgﬂw’ >
- - -
- I =
wn o
= L =
= - i
- =
=
=
g.a } } + a.a ¢ 3 4 BB.E
seae 3p88 2eee |gap Apag 3609 2ppp 1880 ABEBG

YAVENLMBERS £M-1

VAYENUMBERS CH-}

ETLT zepa 1888
YAVENUHBERS CH-1

Figure 3: A) Single channel reference spectrum measured through an empty sample compartment. B} Single channel

spectrum of absorbing sample. C) Transmittance spectrum equal to Fig. 3B divided by Fig. 3A.
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Figure 4: Two closely spaced
spectral lines at distance d (left)

produce

repetitive  patterns  at

distance 1/d in the interferogram

(right).
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Figure 5: A) First 2048 points of an Interferogram consisting of a total of §196
points. Signal In the wings is amplified 100 times. B) FT of first 512 points of
interferogram In Fig. 5a, corresponding to a resolution of 32 cm. C) FT of all
8198 points of interferogram in Fig. 5a, corresponding to a resolution of 2 cm.




6 Resolution in FT-IR

Figure 4 shows the interferogram corres-
ponding to two sharp lines separated by a
wavenumber distance 4. Due to the sep-
aration J in the spectrum, the interfer-
ogram shows periodic modulation patterns
repeated after a path length difference
. 1/d . The closer the spectral lines are, the
greater the distance between the repeated
patterns.  This illustrates the so-called
Rayleigh criterion, which states that in
order to resolve two spectral lines sep-
arated by a distance 4 one has to
measure the interferogram up to a path
length of at least 1/d.

For a practical measurement, which was
done on a Bruker IFS-88 using a broad
band MCT detector, the influence of in-
creasing the interferogram path length on
the resolution is shown in Figures 5A, B,
C. The interferogram in Figure 5A
represents the first 2048 points from a
total of 8186. Figure 58 was cobtained by
transforming  only the first 512
interferogram paints, which corresponds to
a resolution of 32 cm-1. Figure 5C
exhibits the full 8196 point transform. It is
clearly seen that many more spectral
features are .resolved in the case of a
longer optical path.

7 Zero-Filling

It should be noted that DIFT only approx-
imates the continuous FT, although it is a
very good approximation it used with care.
Blind use of eq. (3), however, can lead to
three well-known spectral artifacts: the
picket-fence effect, aliasing, and leakage.

The picket-fence effect becomes evident
when the interferogram contains fre-
quencies which do not coincide with the
frequency sample points k*Awv, If, in the
worst case, a frequency component lies
exactly halfway between twe sample
points, an erroneous signal reduction by
36 % can occur: one seems to be viewing
the true spectrum through a picket-fence,
thereby clipping those spectral contribu-
tions lying 'behind the pickets', ie. be-
tween the sampling positions 4£+Av. [n
practice, the problem is less extreme than
stated above if the spectral components
are broad enough to be spread over
several sampling positions.

The picket-fence efiect can be overcome
by adding zeros to the end of the
interferogram before DFT is performed,

thereby increasing the number of points
per wave number in the spectrum. Thus,
zero filling the interdferogram has the effect
of Interpolating the spectrum, reducing the
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error. As a rule of thumb, one should al-
ways at least double the original inter-
ferogram size for practical measurements
by zero filling it, /.e. one should choose a
zero filling factor (ZFF) of two. In those
cases, however, where the expected line
width is similar to the spectral sample
spacing (as e.g. in case of gas-phase
spectra), a ZFF value of up to 8 may be
appropriate.

The influence of zero filling on the ap-
pearance of water vapor bands is dem-
onstrated in Figure 6. At the top, a
spectrum with no zero filling is shown.
The spectrum at the bottom is zero filled
using a ZFF of 8. While the lines of the
upper spectrum look badly clipped, the
lines are smooth in zero filled spectrum,

It should be noted that zero filling does not
introduce any errors  because the
instrumental line shape is not changed. It
is therefore superior to polynomial
interpolation procedures working In the
spectral domain,

Aliasing, leakage, apodization, and phase
correction will be dealt with in the following
installments.
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Werner Herres and Joern Gronholz

Understanding FT-IR Data Processing

Part 2: Details of the spectrum calculation

In the first part of this series, we covered the FT-IR data acquisition and the Fourer
transformation. This second part continues with the description of the mathematical
operations performed by a FT-IR minicomputer to compute the spectrum from the

interferogram.

1 Aliasing

In part 1 [1] it was shown that sampling
the continuous interferogram and the use
of the discrete version of the Fourier
transformation (the DFT) might produce
artifacts, such as the picket-fence effect,
unless special precautions are taken.
Another possible source of error due to
the use of the DFT is aliasing.

To understand aliasing, we recall the basic
DFT-equation

N-1
S(k*Avy="3 exp(iZmn! N} {n*Ax) (1)

=0

which describes how a spectrum sampled
at wavenumbers 4 *Av can be computed
from an interferogram sampled at optical
path differences n+*Ax. In practical
calculations both # and k& will run from 0
to ¥-1, ie. the DFT produces N
(generally complex) output points from an
input interferogram of N {generally real)

input points. If we expect the spectrum to

be of the form shown in Figure 1A, we will
find that the DFT yields not just a single
spectrum but rather the spectrum plus its
mirror image, as given in Figure 1B: the
first ¥/2 points represent the expected
spectrum, the second part, starting with
the index k=N/2 equals its mirror
image. For practical computations this
means that a DFT of an N-point interfe-

rogram yields only ~/2 meaningful
output points, The second set of N/2
points is redundant and therefore

automatically discarded. This behavior is
also easily derived from Equation {1), if

Dr. Werner Herres and Dr. Joern Gronholz
Bruker Analytische Meptechnik GmbH,
Wikingerstr. 13, 7500 Karlsruhe 21, West
Germany

one substitutes index & by ¥—1. Using
the identity

exp {27k = (expi2z) *~k
= | wxf (2)
=1

one obtains the mathematical description
of mirror symmetry

S(IN —k]) = S(—k} ()

about the so-called
‘Nyquist-wavenumber v '

‘folding'- or

ve={(n/2)*Av

=1/{2*Ax) @
Furthermore, one sees that Equation (1) is
not only valid for indices & from D to
N-1 but for all integers including
negative numbers. In particular, if we
replace k& in Equation (1) by k+m+nN,
we get the equation

S([k+m*N]y= 8(k) (5)

which states that the mirror-symmetrical
N-point  sequence of Figure 1B s
endlessly and periodically replicated as
indicated in Figure 1C.

This replication of the origin spectrum and
its mirror image on the wavenumber axis
is termed ‘aliasing'.

1.1 Alias Overlap

From Figures 1B and 1C it is clear that a
unigue spectrurn can only be calculated if
the spectrum does not averlap with its

mirror-symmetrical replicate (alias). No
overlap will occur if the spectrum is zero
above a maximum wavenumber v, and

it vy 18 smaller than the folding wa-
venumber v, :

Vinx SV =(N/2)* Ay

=1/(2% Ax) ®

Here, we recall from [1] that Av is related
to Av by

Av =1/(N*Ax) (7

If, however, the spectrum contains a
nan-zero contribution e.g. 200 cm™ above
the folding wavenumber v, this will be

‘folded back' below v, and appear at the
wrong position, i.e. v - 200 em™. This is

the possible artifact due to aliasing.

The finer the interferogram sample
spacing Ax is, the further apart are the
aliases and the lower the danger of alias
overlap. However, small Ax means also
an increased number of points ¥ and
therefore higher storage needs and larger
computation times. For a given
wavenumber range, the FT-IR software
has therefore to choose the maximum
sample spacing for which still no overtap
oCCurs.

In part 1, we explained that in FT-IR, the
sampling positions are derived from the
zero crossings of an He-Ne laser wave
having a wavelength A of 1/15800 cm.

As a zero crossing occurs every A/2, the
minimum possible sample spacing Av,;,
is 1/31600 cm. With Equation (4], this




corresponds to a folding wavenumber of
15800 em™, i.e. the maximum bandwidth
which can be measured withaut overlap
has a width of 15800 cm™. A larger range
can be covered, if the laser freguency is
electranically doubled (frequency
multiplication).

Very often, the investigated bandwidth is
much smaller than 15800 em™, eg. in
mid-IR, where v,,,, is generally less than
4500 cm™ and especially in the far-IR with
wavenumbers below 200 cm™. In these
cases, one can choose Ay to be an m-fold
multiple of Axy;, . This leads to an m-fold

reduction of the interferogram size.

1.2 Undersampling

An even greater reduction of the data size
is possible, if the spectrum is zero below a
lower band limit w;, and if w,is not
zero as assumed above. [f the spectrum

band limits v, and v, lie betwean

lower and upper folding wavenumbers
vy, and vy, which are related by

-1
I-’ﬂ' = T'l’ﬂ_f (H = 1,2, ..) (8)

it will look as indicated in Figure 1D for the
case n = 4. The upper folding
wavenumber ~.v,, must be a natural

fraction {or integer multiple) of the He-Ne
laser wavenurnber:

1"14[] = ﬂ' *135800
(9

If we now further increase the sample

spacing by a factor », the aliases of
Figure 1D will overlap appreciably, thus
filling the previously empty range from 0 to
vy, with # -1 further copies of the original

spectrum. This is shown in Figure 1E. As
all copies are identical {except that their
absolute wavenumber scaling and their
direction on the v -axis can differ from the

fr=n 5 5023,

original}, we need not calculate the
spectrum at its true position by an
N/n-point FT, but rather calculate the
alias of lowest wavenumber by an
N/n-point FT and correct its wavenumber
scaling afterwards. This further » -fold re-
duction of interferogram size compared to
the conventional case, where vy, =0, is

termed 'undersampling’. 1t should be
noted that undersampling enables
measurements with a v, higher than

the original laser wavenumber, because
only the difference vg; —v, and not the
absolute values of the folding

wavenumbers is to be considered in the
sampling condition
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Arg—— 1 (10)
vy ~vy,

An advanced FT-IR software package will
automatically account for proper sampling
and undersampling, such that only the
upper and lower limits of the desired
spectral range need to be specified. The
user only needs to make sure that the
investigated spectrum is really zero
outside the range v, to vy by inserting

either optical or electronic filters.

For technical reasons, the sample spacing
must often be increased in steps of
powers of two. The possible folding
wavenumbers for this commaon case are
given in Table 1.

2 Effect of the Finite
Record Length: Leakage

Unlike the picket-fence effect and aliasing,

leakage is not due to using a digitized
version of a continuous interferogram.
Leakage is caused by the truncation of the
interferogram at finite optical path
difference. The proper mathematical term
to describe the effect on the spectra of
truncating the interferogram is ‘con-
volution®,

2.1 Convolution

Mathematically, an interferogram IL{x),

truncated at optical path difference x= L
can be obtained by multiplying an
Interferogram /i{x) of infinite extension by

a 'boxcar function BX(x), which is zero
for x> L andunityfor x< L ,j e

TL(x) = Ji(x)* BX (x) (11)

According to the convolution theorem of
Fourier analysis, the Fourier transform of 2
praduct of two functions is given by the

convolution (here indicated by the 'Q'
symbol of their individual Fourier
transforms, i.e. if Si(i) and bx{v) are the

Fourier transforms of fi(x) and BX(x},
respectively:

Si{v) = T{:xp(t‘ 2mix) # Ji{x)dx
z 2
bx(v) = Jexp(a‘chr) * BX (x)dx

—a

then we get the following relation for the
Fourter transform SL{v) of the truncated

interferogram [L{x)

SL{Vv) = Texp(i?.m{r) w [L(x)dx

OO

-+
= _Lexp(t’.’lm'x) * Ji{x) BX {x)dx (13)

= [Si(k)bx(v - k)dk

= Si(v) Q bx(v)

The computation of a convolution integral
B(v)0 C(v) as in Equation (13) can be
visualized by the following procedure:

- Put the function B onto the i-axis
with its origin at £=0. Thisis B{k).
Do the same for function C(k).

- Move the origin of function C(k) to
another position t=v and reflect it




about this position.  This vyields
Clv—k}.

- Multiply the displaced and reversed
function C(v-%) by B) and

measure the area under the product
function. This is the value of the
convolution integral for one position.

- Repelition of the above three steps
for all positions vields the complete
wavenumber dependence of the
convolution integral.

According to Equation (13), the spectrum
SL{v) of a finite interferogram can thus be

obtained by convolving the spectrum
Si(v) corresponding to infinite optical path
difference {and hence to infinite resolution,
see part 1) with the ‘instrumental
lineshape' (ILS) function, b&x(¥). This
enables a clear description of a measured
lineshape in terms of a natural lineshape
{NLS) due to physical line broadening, the
ILS representing solely the contribution of
finite resolution.

The analytical form of the ILS
corresponding to boxcar truncation can be
easily derived from the Fourier integral of
& unity operand using a finite integration
range. The result is the well-known sinc
function:

bx(v)= I *S{n c{2vl) (14)

= L#sin(2mvl)/(2mvl)
which is plottediin Figure 2. One sees,
besides a main ‘maximum centered about
v =0, numerous additional peaks, called
side lobes or 'feet. These side lobes
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cause a 'leakage’ of the spectral intensity,
i.e. the intensity is not strictly localized but
cantributes also to these side lobes. The
largest side lobe amplitude is 22% of the
main lobe amplitude.

As the side lobes do not correspond to
actually measured information but rather
represent an arifact due to the abrupt
truncation at x=1L, it is desirable to
reduce their amplitude. The process,
which attenuates the spurjous ‘feet' in the
spectral domain, fs known as ‘apodization'
(originating from the Greek word azos |
which means ‘removal of the feet').

2.2 Solution to Leakage:
Apadization

a4
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The solution to the problem of leakage i
s to truncate the interferogram less
abruptly than with the rectangular or
‘boxcar' cutoff. This is equivalent to
finding a cutoff or apodization function with
a Fourier transform which shows fewer
side lobes than the sinc function.
Numerous such functions exist. An
extensive overview of their individual
properties can be found in the review by
Harris [2]. In Figures 3B - 3D, four
examples of such functions and their
Fourier transforms are plotted together
with the boxcar cutoff in Figure 3A. The
analytical forms of these apodization
functions are

Trinagutar {TR):

TR{x) =1-n/L (13)

(n=01,..L1)
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Trapeziodal or Four - point (FP) :
FP(xy=1{n=10,,..,8PC)
1-[n— BPCY/[BPC— BPC]
(n=BPC,...BPD)

(16}

This is & boxcar function between 0 and
breakpoint 8PC, and a triangular function
between breakpoints BPC and BPD. In
Figure 3C we choose BPD =1L,

Hamming or Happ - Genzel (HG) :
HG(x) = 0.54 + 0.46c0s(m/ L)
(n=0,L..,L)

(17

This is a cosine halfwave on a boxcar
pedestal. The amplitude at the boundary
x=1L is not zero but still 8% of the
amplitude at the origin. The parameters
0.54 and 0.48 have been chosen for
optimum suppression of the first, Jargest
side lobe.

Three and four - term Blackmann -
Harris (BH)
BH{x)= AQ+:dl-cos(mm/ L)
+ A2 cos(z2n/ L)
+ 43 cos(r3ni L)
(n=10,1,..,L)

This set of windows is a generalization of
the Happ-Genzel function. The
coefficients .. ‘have been  optimized
numerically .to:trade main [obe width for
side lobe suppression (see [2]):

3-term BH 4-term BH
AO 0.42323 0.35875
AT 0.49755 0.48829
A2 0.07922 0.74128
A3 0.0 0.01168

The three-term BH-window is plotted in
Figure 3E,

2.3 Apodization and
Resolution

As expected, Figure 3 reveals that all
apodization functions produce an ILS with
a lower side lobe level than the sinc
function. However, one also sees that the
main lobes of all ILS's in Figures 3B - 3E
are broader than that of the sinc function
in Figure 3A. The width at half height
(WHH) of the ILS defines the best resolu-
tion achievable with a given apodization
function. This is because if two spectral

lines are to appear resolved from one
another, they must be separated by at
least the distance of their WHH, otherwise
no 'dip’ will occur between them. As side
lobe suppression always causes main
lobe broadening, leakage reduction is only
possible at the cost of resolution.

The choice of a particular apodization
function depends therefore on what one is
aiming at. If the optimum resolution of
0.61/ L is mandatary, boxcar truncation
(= no apodizaticn) should be chosen. Ifa
resolution loss of 50% compared to the
boxcar can be tolerated, the
Happ-Genzel-, or even better, the 3-term
BH-apodization is recommended. If the
interferogram contains strong
low-frequency components, it may show
an offset at the end, which would produce
‘wiggles' in the spectrum. To suppress
these wiggles, one should use a function
that is close to zero at the boundary, such
as the ftrangular-, trapezoidal-, or
Blackman-Harris windows, As the ILS
produced by the Blackman-Harris function
shows nearly the same WHH as the
triangular- and Happ-Genzel function
{roughly 0.9/L), but at the same time, the
highest side lobe suppression and is
furthermore nearly zero at the interval
ends, it can be considered the top
performer of these three functions.

In practice, the shape of a spectral line
measured at finite resolution is always a
mixture of natural and instrumental
lineshape, This is demanstrated In
Figures 4A - 4C, where the same NLS ({in
our case a [Lorentzian), recorded at
different resolutions, is plotted. The ILS
corresponds to boxcar truncation. One
sees that a lineshape close to the NLS
can only be observed If the width of the
ILS is small compared to the NLS.

At the end of the discussion of
apaodization, it should be noted that an
instrumental lineshape with side lobes is
of course also imposed on spectra from
dispersive instruments. The ILS produced
by the slit of a grating spectrometer
corresponds to the ILS caused by
triangular apodization. The difference
between FT-IR and dispersive
spectroscopy concerning apodization is
that an FT-IR spectroscopist can choose
the oplimum ILS for his specific needs,

while the ‘dispersive spectroscopist
cannot.
3 Phase Correction

The last mathematical operation to be
performed during the conversion of an
interferogram into a spectrum is phase
correction.

Phase correction is necessary, because
the FT of a measured interferogram
generally yields a complex spectrum

C(v) rather than a real spectrum §(v) as

known from conventional spectrometers.

A complex spectrum C{) can be
represented by the sum
C(v) = R()+ () (19)

of a purely real part R(v) and a purely
imaginary part I{v) or, equivalently, by
the product

C(v) = S()exp(ip(v)) (20)

of the true 'amplitude’ spectrum. ${1/) and
the complex exponential exp({g(1))
containing the wavenumber-dependent
'phase’ g{v).

The aim of the phase correction procedure
is to extract the amplitude spectrum S(1)
from the complex output C(v) of the FT,

This can be done either by calculating the
square root of the ‘power spectrum’
PO =CO)+C*(v):

S =[Cr)*C* )

(21)
=[R*)+ PP)*
or by multiplication of C(v) by the inverse

of the phase exponential and taking the
real part of the result:

S(v) = Re[C(v)exp(~ig{v))] (22}

The phase ¢(v) in the exponential
exp(ig(v)) can be computed from the
relation

#() = arctan[/(v}/ R()] (23)
Equations (21) and (22) are equivalent, if
one deals with perfect data free of noise,
However, if noise is present, as is always
the case with measured data, noise

contributions computed from Equation (21)
are always positive and in the worst case,

a factor or +2 larger than the correctly
signed noise amplitudes computed from
Equation (22). Procedure (22) is known
as 'multiplicative phase correction' or the
'Mertz method' [3).

3.1 Reasons for the
Non-Zero-Phase




The reason for getting a complex
spectrum out of the FT is that the input to
the FT is not mirror-symmetrical about the

point x=0. The asymmetry of the FT
input originates from three different
sources:

a) None of the sampling positions
coincides exactly with the proper
position of zero path difference. This
is generally the case and causes a
phase linearin v .

b) Only a 'one-sided' interferogram is
measured, ie. only one side is
recorded to its full extent, the other
consists only of a few hundred points.

c) The interferogram may be 'intrinsically’
asymmetric. This may be due to
wavenumber-dependent phase
delays of, either the optics, the
detector/famplifier unit, or the
electronic filters.

Figure & shows how the phase
contributions from a) and b) ean be
calculated from a short double-sided
portion of length PIP (PIPi2 points on
either side of the centerburst), This yields,
after apodization, zero filling, and FT gives
a low resolution phase spectrum, As the
phase is a slowly varying function of v
{except in the regions of beamsplitter or
filter cutoff), a low resalution phase
| spectrum is sufficient. During the phase
correction this is:expanded to the size of
the full array by interpolation.

The steps in the computation of the full
array are shown in Figure 6. After
apodization, the short double sided part is
multiplied by a ramp to avoid counting it
twice. The effect of this ramp can be
understood by decomposing Tt into a
boxcar of height 0.5 and a ramp through
the origin, as indicated in Figure BB.
Because of the symmetry properties of the
FT, the even boxcar function contributes
only to the real part of the FT and has the
effect of multiplying all contributions from —
PIPIZ to +P{P/2 by 1/2, while the odd part
of the ramp contributes only to the
imaginary part of the FT. The odd part of
the ramp is added to avoid a step at +
PIP{2, which would produce ‘wiggles’ in
the spectrum.

Having multiplied the data array by the
ramp and the apodization function, it is
zero filled and Fourier transformed.
Using Equation (22} the resulting complex
array C(v) is then multiplied by the

complex exponential exp(ig(v)), which is

computed by interpolation from the fow
resolution phase spectrum,

After the phase correction, the corrected
real part R'(v)

R'(v) = R(v)cos(f(v)) - H{v)sin(d(v))

spectrum S(v) which is stored for further

pr?c)essing‘ The corrected imaginary part
'y

I'(v) = R{v)sin{g(v)) + (v)cos(¢(v))

represents the final single-channel
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originates  from the  antisymmetric
contribution of the cutoff at —=P/P/2 and the
ramp as is shown in Figure 7. /() would
be zero, if a double-sided interferogram
had been used. The corrected imaginary
part is normally skipped or not even
calculated to save computer time.

The fact that /*(v) Is non zero after the

phase correction demonstrates that the

direct calculation of S(v) from the power
spectrum via Equation (21) will yield
erroneous results in the case of ane-sided
interferograms, because this procedure
corrects for all contributions te 7(v),
including those from the cutoff at -pIP/2.
This method is only properly applicable to
double-sided interferograms.

With this last topic we have now
completed the discussion of the standard
operations necessary to convert an
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interferogram into its spectrum. In the
next installment, we will deal with several
FT- or interferogram-based technigues,
which are very useful in IR- and GC-IR
spectroscopy.
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Werner Herres and Joern Gronholz

UNDERSTANDING FT-IR DATA

PROCESSING

PART 3: FURTHER USEFUL
COMPUTATIONAL METHODS

In Paris 1 and 2 of this series we covered the standard operations of FT-IR, from data
acquisition te the final spectrum. This third and last part continues with a discussion of

additional useful techniques and closes with a remark about the data system.

In Parts 1 and 2 [1, 2] of this series we
dealt with data acguisition in a Fourier
transform infrared (FT-IR) spectrometer
and described the processing of the raw
data to generate the final spectrum. To
perform the necessary calculations in a
reasonable time, the minicomputer of an
FTIR spectrometer needs sufficient an-line
computing power and is thus also very
well suited to do:more than just calculation
of FFT's, phase:correction, and ratioing of
spectra, In fact; the considerable inherent
number-crunching capability inside an FT-
IR spectrometer is sometimes called the
fourth advantage of FTIR. In this last part
of our series we discuss some examples
of such additional data processing in both
domains: the frequency domain and the
interferogram domain.

1 The Problem of
"Ghost" Interferograms or
Fringes

The appearance of sinusoidal
modulations, called ‘'fringes' on the
baseline of IR-spectra is well known to
spectroscopists. These fringes or 'channel
spectra’ result from multireflections of the
IR beam between the surfaces of a
plane-parallel device in the spectrometer's

Dr. Werner Herres and Dr. Joern Gronholz
Bruker Analytische Meptechnik GmbH,
Wikingerstr. 13, 7500 Karlsruhe 21, West
Gemany

optical path, such as the plane parallel
sample itself or a liquid-cell window. They
can disturb the 'useful’ spectral information
quite serjously, as is shown for the
absorbance spectrum of a silicon wafer in
Figure 1A. From Figure 2 in [1] it is readily
concluded that fringes of constant
frequency in the wave number domain
must result from a single 'spike’' or a nar-
row ‘'signature’ in the corresponding
interferogram, Indeed, the sample
interferegram from which the absorbance
spectrum in Figure 1A was calculated,
shows a 'ghost' interferogram or 'echo
peak' at an offset of 4206 interferogram
points from the centerburst {see Figure
1B). The interferogram was acquired at a
resolution of 2 cm™ and thus consists of
8192 points. Fourier transformation of the
full interferogram including the echo peak
yields the spectrum in Figure 1A, whereas
reduction of the resolution to 4 cm™
(equivalent to an interferogram of 4095
data points) truncates the interferogram
Just before the echo peak vyielding the
fringe-free' spectrum of Figure 1C.

This example shows that cne can easily
get rid of the fringes by discarding all
interferogram points from the echo peak to
the end. This can be achieved either by
choosing a lower optical resolution during
data acquisition or by apodization with a
trapezoidal function (see Figure 3 of [2])
chosen such that all points from the echo
peak to the end are set to zero.

1.1 Mathematical Description
of the Fringes

The single channel spectrum S() of the
IR-radiation  transmitted through a
multireflecting plate can be calculated
from the empty-channe]l background
spectrum  B(v} the half-space power
reflectance R{v) the refractive index n(v).
the absorption coefficient a(v), the phase
change &(v) occurring at every internal
reflection and the thickness « of the plate.
The result is the well-known Airy formula
[3] which we have extended to include
absarptive intensity loss and cast into a
form better suited for Fourer trans-
formation;

S(v)=5+25, ; (R()exp(- ad)}f

(1)
X cos(tl;zfcn(v)d o+ 2!;.9(1:))

with

- g() 1= RO expl ad) 2
S (v) - B(l )I—Ra(v)exp?—- Zad) @

Equation (1) shows nicely that the
resulting spectrum can be represented by
the sum of a fringe-free spectrum So(w)
and an infinite number of interference

terms. Due to the factor (’{v)exp(-ad)f
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Figure 1: A) Absorbance spectrum of a silicon wafer calculated using the full

length ({BK points = RES 2cm-1) of the interferogram from Fig. 1B. B) Sam1ple
interferogram of a silicon wafer. Spectral resolution corresponds to 2 cm’

(:

8K points). The distance between the small ‘ghost’ interferogram on the right
and the centerburst is 4206 pints {y-scale expanded for clarity). C) Absorbance
spectrum of a silicon wafer calculated from the interferogram of Fig. 1B using

only 4K data points {resolution = 4 cm™).

the intensity of the & -th order interference
term decreases with ascending order %

because R*(v) is always less than 1.

The interferogram corresponding fo S(v)
can be calculated from eq. (1) by inverse
Fourier transformation. For the sake of
simplicity we assume that the refractive in-
dex n{v) and the phase §(v) within the
argument of the cosine interference terms
do not depend on v. For this simplified
case one gets

1{x)= In(x)

+ 2i]k(x)0{x—(2rzkd+ 269 (3)
k=l

]

+ 25 1(x)o 1 [x + (2nkd + ?_kS)]
k=1

This result shows that the cosine
interference terms of the spectral domain
correspond to additicnal ghost
interferograms  in  the interferogram
domain, appearing symmetrically on both
sides of the centerburst at distances
2nkd + 248 . The shape of these echo

peaks is given by convolution of the undis-
turbed main interferogram 7,(x) with the

'interferogram' 7, (x) which is the product
of the reflectance spectrum R(v) and the
transmission spectrum  7'(v) = exp(-ad).

For the same reason as given above, the
intensity of the & th ghost interferogram is

at least smaller by a factor R* than the
main centerburst. Due to the wavenumber
dependence of n(v) (ie.: to dispersion)
and of 9} which we explicitly neglected
in the derivation of eq. (3), the echo peaks
are generally additionally broadened and
distorted and may be thus further reduced.

1.2 Use of Fringes for
Thickness Determination

Eq. (3) shows, that the distance between
the main centerburst and the echo peaks
is directly proportional to the product of
refractive index » and thickness . If the
average refractive index n is known, one
can therefore calculate the thickness of
the fringe-producing element.  This
possibility is, e.g., often used in
semiconductor quality control  to
determine the thickness of epitaxial
layers deposited on doped substrates,




Conversely, if both » and 4 are known,
the offset X between main peak and
first echo peak can be calculated as:

X =N*Ax
=2mpng

or in points

N =2 n+d(ax)! (4)

with (ax)! = 157800 cm™ for mid-IR

bandwidth, 0 — 7900 cm™.

The problem of ghost interferograms is of
course not restricted to silicon wafers but
can also be encountered in measuring
standard alkali halide peilets or cast films
on, e.g., KBr crystals. Somelimes spectra
look 'noisy’ at longer wavelength whereas
expansion reveals fringes resulting from
‘oo perfect! a preparation, ie. from
plane-parallelism of the pellet.

In Tahle 1 the distance N between the
interferogram centerburst and the first
echo peak has . been compiled for several
thicknesses of four substrates commonly
used in FT-IR. ‘This table also shows the
-maximum resolution, which does not
include the echo peak. It may be helpful
in finding the -proper combination of
sample thickness and resolution for a
given substrate.

1.3 Possibilities for Eliminating
Fringes

The guestion might arise whether there is
some method of eliminating all kinds of
fringes, which plague the spectroscopist
when measuring polymer films. Figure 2A
shows the transmission spectrum of some
technical polyethylene (FPE)-type film.
Although the modulations are very
pronounced in the specirum, the
correspanding echo peak in the sample
interferogram of Figure 2B can hardly be
detected, being due to a much smaller
reflectance R(v) of PE as compared to

silicon and to stronger dispersion, which
additionally broadens the echo peak and
reduces its size. Furthermore, the echo
peak is located only 267 points away from
the centerburst because the film is only
about fifty microns thick. For this latter
reason, truncation of the interferogram (=
reduction of resoiution) is here obviously

no solution because the resulting
resolution would be too poor. In those
cases where reduction of resolution

cannot be applied, there are at least two

Table 1: Location of the echo peak as a function of substrate thickness,

Offset of the echo peak relative to the centerburst as a function of the
thickness of four commonly used substrates. Last column contains the
maximum possible resclution for which still no interferences occur assuming
250 points before and 2 * * N- 250points after the centerburst in all cases.
Bandwidth 7900 cm -throughout. Value of refractive index n corresponds to

1000 cm -
Substrate Thickness Offset from Maximum resoclution
[em] Centerburst without interferences
[Paints] [cm Y
KBr 0.05 2417 8
0.1 4834 4
(n=1.53) 0.15 7252 4
0.2 9669 2
0.3 14504 2
0.5 24174 1
AgCl 0.05 3128 8
0.1 6257 4
(n =1,08) 0.15 9385 2
0.2 12514 2
0.3 18770 1
0.5 31284 1
ZnSe 0.05 3792 8
0.1 7584 4
{n =240 0.15 11386 2
0.2 15168 2
0.3 22752 1
0.5 37920 0.5
Si 0.05 5403 4
0.1 10807 2
(n =3.42) 0.15 16211 1
0.2 21614 1
other soluticns to the fringe problem: an  minimized. This experiment makes it

experimental and a numerical solution.

1.3.1Experimental Solution of
the Fringe Problem

From Eg. (1} it is clear that all interference
terms vanish if the reflectance R{) of the

sample can be made Zero.
Experimentally, this is indeed possible
using polarized IR radiation, as is shown
in Figure 3A, where the same polymer film
was measured. A KRS-5 polarizer was
used to provide an IR beam polarized
paralle! to the plane of incidence, while the
film itself was oriented to the incident light
at the Brewster angle. As the reflectance
of this type of polarized radiation
approaches a minimum at the Brewster
angle (or is ideally zero), multireflections
and thus 'channel spectra’ are also

possible  to obtain a difference
interferagram (Figure 2B minus Figure 3B)
which reveals the structure of the echo
peak more clearly (see Figure 4).

Another experimental solution to the fringe
problem would be a measurement using
ATR  (attenuated total reflection).
However, unlike the Brewster angle
measurement, ATR would change the
relative intensities due to the wave-
length-dependent depth of penetration.
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1.3.2Numerical Solution of the
Fringe Problem

The undesired osclllations due to
multireflections are spread over a large
part of the spectrum but are confined to a
small region in the interferogram demain.
Numerical correction of the fringes is
therefore easier in the interferogram do-
main. As we have learned from Egs. (1)
and (2), removal of the fringes from the
spectrum is equivalent to removal of the
echo peaks from the interferogram, 1t has
been shown by Hirschfeld and Mantz [4]
that this can be done by substituting the
regions around the echo peaks, by zeroes,
by a straight ling, or by another
reasonable guess of the undisturbed 0-th
order interferogram. Using the Interfer-
ogram of Figure 2B as an example, the
substitution of the echo peak by a straight
line is demonstrated in Figures 5A-C. One
sees that, in contrast to the 'clean’ experi-
mental solution of Figure 3A, not all
oscillations are removed but they are
drastically reduced in size such that small
peaks which were hidden under the
oscillations are now clearly detectable.
Although substitution by a straight line is a
brute-force method, the result is quite
useful but must always be regarded with
caution as additional artifacts, like creation
or cancellation of line splittings, can easily
be introduced.

This numerical solution of the fringe
problem can only be applied if the echo
peak is intense enough to be detected and
if it is far enough away from the
centerburst,
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Figure & A) Part of the sample
interferogram from Fig. 2B containing the
signature. B) Same part of interferogram
as in Fig. 5A, but points 466 to 472 (14
points) are substituted by a straight line to
suppress the signature. C) Same as Fig.
6B but points 466 to 514 are substituted
(49 points). D) Transmission spectrum
calculated from the interferogram of Fig.
5B. E) Transmission spectrum calculated
from the interferogram of Fig. 5C.
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While the smallness of the echo peak
can be overcome by calculating its
position from Eq. {5) if both » and 4
are known, viclation of the second
condition leads to severe baseline
distortions and cannot be
recommended.

Before leaving the interesting field of ghost
interferograms, it is worthwhile noting that
a 'simple' absorbance measurement of,
say, a KBr pellet is not adequalely de-
scribed by the familiar formuia

T(v)= exp(— a(v)d )

with transmittance T(#} and absorbance
alv)d , but must even in the simplest case

of no multireflections be substituted by the
numerator of Eqg. {2).

7{v)=(1- R} expl-alv)d) ®)
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This means that one must not forget at
least two reflections at both boundaries of
the sample. The factor (1 - R)* * 2 causes
an intensity reduction of the transmitted
radiation, but may also lead to changes in
position and intensity of single lines if
R(v) is significantly structured. If the

pellet has plane-parallel surfaces,
multireflection comes into play and the full
Eq. (2) (divided by the empty channel
background spectrum B(P)) must be used.
Thus, from a transmission measurement
one always gets a mixture of reflection
and absorption properties unless the
reflectance contributions are explicitly
corrected for. This single or multireflection
correction, 1le. extraction of the
absorbance a{P)d from equations (5) or
(2) is another task which could be
routinely performed by the FT-IR
spectrometer's minicomputer. It is man-
datory if one is interested in precise
determination of optical constants.

2 Interrelation of
Smoothing and Apodization

In Part 2 of this series we already
described apodization at some length.
Apodization means multiplication of the
interferogram by a decaying function. [t
effect on the spectrum is a suppression of
side lobes at the expense of decreased
resolution. *We also showed that
muliiplication of the interferogram /(x} by
a function -a(x) is equivalent to
convolution of the spectrum S(v} by the
Fourier transform A(v) of the apodization

function.

Three of the special apodization functions
discussed (Happ-Genze! 3- and 4-term
Blackman-Harris) consisted of a sum of
cosine functions as

N
BH(x)= A0+ Y dncos{nrm*x/L).

=l

It is instructive to calculate the Fourier
transform of such a function and look at
the corresponding convolution In the
spectral domain in more detail. One gets

S (v Av)= A0 S(r= A7)
+ AYS (- 1) av)+ S+ 1)r Av))

- A2As(r-2)x8v)+ S(n+2)xav)) (6
K

+ AN(S((R— N)*Al/)-i- S((n-i- N)*AV))

Hence, in order to calculate one point
S'(n*Av) of the spectrum corresponding

to the apodized interferogram one must:

- multiply the ordinate S(n*Av) of the

non-apodized spectrum by 40,
- multiply the left and right next
neighbors of S (u*Av) by A1,

- multiply the left and right second next
neighbors by A2 and so forth (up to
N =3 for 4-term BR)

- sum the intermediate results. This is
S'(n*t_\v).

This shows that the points of the spectrum
S'(n+Av) are a weighted mean of

adjacent points of the non-apodized case
S(v}, the coefficients dArn of the

apodization function being the weighting
factors. As taking a weighted mean of
spectral data amounts to nothing but
smoothing, we conclude that apodization
in the interferogram domain is equivalent
to smoothing in the spectral domain.
(Note that this special family of
apodization functions would easily allow
one to perform the apodization after the
FT by summing neighbering points of the
non-apadized spectrum  muitiplied by
appropriate factors.)

Smaoothing is an essential tool for reducing
the noise in a spectrum. In addition to
apodization, smoathing is mostly done by
the famous Savitzky-Golay procedure [5],
the merit of which is that (although a
least-squares method and therefore
data-dependent) the weighting coefficients
used in the averaging process are fixed
integers. This means that smoothing can
be programmed in integer arithmetic
leading to short computation times even
on machines without floating point
hardware support. As spectral smoothing
js so widespread and well known, we omit
a detailed description and rather turn to
the question of what happens if smoothing
is done in the interferogram domain.

2.1 Smoocthing in the
Interferogram Domain:
Digital Filtering

The effect of smoothing an interferogram
on the corresponding spectrum s
demonstrated in Figure 6A-C. Figure BA
shows an unmodified single channel
spectrum, Figure 6B shows the spectrum
corresponding to the same interferogram
smoothed using a 9-point Savitzky-Golay
window. Figure BC is the ratio of Figures
6B and 6C. One sees that the effect of
smoothing the interferogram is to
decrease the intensity of the spectrum
towards higher wavelengths, /e, It
behaves like a low-pass filter with the
frequency response of Figure 6C. Accord-
ingly, convolution in the interferogram
dornain is termed 'digital filtering'.

Digital filtering is closely related to
apodization although the aims of both
procedures are completely different.
While during apodization one multiplies
the interferogram by the apodization
function to achieve a certain line shape
(convolution), digital filtering means that
one convolves the interferogram by a filter
function to  achieve a  certain
(muitiplicative) frequency response. In
practice, the filter function is seldom of the
Savitzky-Golay type (this was simply used
as an example) but is derived from the
desired frequency response by inverse
Fourier transformation of the desired
spectral bandpass in case of
non-recursive filters.

The advantage of digital - compared to
analog - filtering lies in its great flexibility,
because almost any conceivable
frequency response can be modeled. The
only problem is that, even today, where
high-speed multipliers/adders are
available, the time needed for computing
the necessary convolutions is often still
too long for realtime filtering in
high-speed applications with data rates >
100 KHz. For slow-scanning FT-IR
spectrometers, however, digital filtering
can be appropriate and s then another
task to be performed by the
spectrometer's minicomputer,
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3 Deconvolution

Deconvolution is another interesting
FT-based method closely related to
apodization and convolution. The aim of
deconvolution is to decrease the widths of
all lines in a limited spectral region or,
equivalently, to enhance the apparent res-
olution of the spectrum.

The method is based on the assumption
that the investigated spectrum S(v) may

be represented by a convolution
S(v)=8'0)0 Llv) {(7)

of a deconvolved spectrum S'(v)

containing sharp lines and a function L(y)
which is responsible for the iine
broadening. From the discussion of
apodization in Part 2 of this series we
know that convolution in the spectral
domain corresponds o simple
muttiplication in the interferogram domain.
Thus, inverse FT of Eg. (7) yields the
product

1x)=1{x)*ix) 8

from which the broadening effect of L(v)
can be easily cancelied by division by
Ax). The deconvolved spectrum S'(v) is
then obtained by anocther forward FT to
the spectral domain. [(x), I'(x), and
Mx) represent the inverse Fourier
transforms of S§(v), S'(v), and L(v),
respectively. As an easy example we
consider the case of an absorbance
spectrum S(v), consisting of a single

Lorentzian line which may be represented
by convolution of an infinitely sharp line (a
delta function) at v =1,

§'(v)=olv—vy) (@)

with a line shape function

Figure 6: A) Single-channel sample
spectrum of the polymer film used
for Figs. 2, 3. B) Same spectrum as
in Fig. 6A but after smoothing the

interferogram by a 9-point
Savitzky-Golay  window. The
intensity towards higher

wavenumbers is decreased. C) Ratio
of Fig. 6B and Fig. 6A, showing the
frequency response of  the
Savitzky-Golay 9-point digital filter
({see text).

Ly)=—2m_. (10)

5(v)=5'(v)o L)

=6{v—1g) 0 alm

: (11)
a” +v”

alr

T v

As was shown in Figures 2A, C of [1], &
sharp line comresponds to a cosine
function in the interferogram domain

7'(x) = cos(2zvgx) (12}

whereas a Lorentzian at wavenumber

corresponds to a cosine damped by (i.e.
multiplied by) an exponential decay
funsotion

l(x) = exp(—- r alxl) (13)

and is thus represented by the product

1{x)=1'(s)*2lx)
(14)

= cos(2mvyx) expl- 2 af])

Deconvolution (= removal of the damping
function A{x) is here obviously achieved

by multiplication of f({x)by the inverse of

Ax)
YMx)= exp(+ 2:ralx[) (15)

yielding first the Fourfer representation
I'(x) of the deconvolved spectrum S'(»)

and - after another forward FT - the
deconvolved spectrum S'(v) itself.

Apptied to experimental data,
deconvolution is less trivial than it appears
from the synthetic case above because
the proper form of the line shape function
L{v} is nat known a priori. L{v) can only
be approximated by making a more or less
reasonable assumption of its form (e.g.
Lorentzian or Gaussian, or a mixture of
both) and by estimating its width from the
narrewest Iine in the investigated spectral
area.

Ancther complication arises from the
noise, which is always present in
experimental data, as it is strongly
amplified by the removal of the damping
function. it has been shown by Kauppinen
et al. [6] that noise effects can be partly
suppressed by apodization of /(x) by a




triangutar function which truncates I(x) at
a point x=£ beforetheend at x=L. If
it happens that the assumed L{v) exactly
equals the true L{v), the shape of the
lines in the deconvolved spectrum S'(v)
will be exactly of the type

L'(v)= Esin cl(mﬂE)

due to the apodization.

An example of what one typically may
expect from deconvolution is given in
Figures 7A-E. By an inverse FT, the
original spectrum of Figure 7A s
transformed to the interferogram domain
(Figure 7B) and enhanced {multiplied) by
the function of Figure 7C yielding Figure
7D which, after another forward FT,
results in the resolution enhanced
spectrum of Figure 7E. On comparing
Figure 7A with Figure 7E, one sees that
the original spectrum has heen resolved
into four components with an indication of
a fitth component near 1450 em™. The
question, whether all of the smaller three
components are true or artificial is not
easy to solve, :Additional oscillations may
easily be introduced by
‘over-deconvolution’, i.e. by overestimating
the widths of .the line shape L{v), as
shown in Figure 9. In case of doubt, one
should always Underestimate the proper
line width; this‘leads to lines broader than
the achievable:minimum but also with
fewer artifacts.

4 Spectrum Simulation

Deconvolution allows one to determine
peak positions, relative intensities, and the
number of individual components
contributing to a cerlain spectral area, [t
should not be confused with spectrum
simulation, which works in the spectral
domain and which tries to represent a
given spectrum by superposition of
individual lines, the parameters of which
(position, height, width, type} are
optimized such that the deviation between
experimental and simulated curve ap-
preaches a minimum. It should be noted,
however, that deconvolution is well able to
provide good starting values for the
parameters of a spectrum simulation. This
has been decumented in Figure 8, which
represents the result of an automatic
least-squares spectrum simulation using
the example of Figure 7A and the results
from the deconvolution as starting values
for the variation parameters. This shows
that both methods complement each other
nicely.
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Deconvolution and spectrum simulation
are mostly applied to absorbance spectra
but they could equally well be used for
analyzing other data like chromatograms.

1458 1243 1428 1280
WAVENUMBERS CHM-1




1450 T 1420
WAYENUMBERS CH-

1agg

15 Generation of GC-IR
Chromatograms

The combination of fast scanning
spectrometers ‘with gas chromatography
(GC) and especially with capillary gas
chromatography (HRGC) has evolved to
the powerful hyphenated technigues
GC-FTIR and HRGCFTIR. In these
techniques, the FTIR spectrometer is used
to measure complete interferograms of the
gas leaving a GC-column at constant time

intervals. From the  acquired
interferograms ~ different  kinds = of
chromatographic  traces may  be
generated.

5.1 Spectral Window
Chromatograms

Spectral window chromatograms monitor
the change in absorbance in discrete
spectral regions. This calculation involves
all steps of computation typical for FT-IR
spectroscopy like apodization, FT, phase
correction, and ratioing to & stored
background spectrum and is therefore a
demanding task for the speclrometer's
minicomputer.  If it is to be done in
realtime, with both high time resaolution
and sufficient spectral resolulion, it
generally needs the number crunching ca-

pability of an additional FT- or aray
processor.

5.2 GC Traces Directly from
the Interferogram

Besides window GC traces also
non-frequency  selective ‘total! IR
chromatograms similar to a GCFID trace
can be calculated in various ways [7,8].
From the algorithms working directly on
the interferometric data, a vector
projection technique using the
Gram-Schmidt arthcnormalization
procedure became fairly popular as
'‘Gram-Schmidt' technique and shall be
treated below. Extracting
chromatoegraphic information directly from
the interferogram without FT is fast and
thus also possible on minicomputers
without dedicated FT-processor.

5.2.1Gram-Schmidt Technique

In the Gram-Schmidt technique a
reference set of M interferograms is
collected directly before the GC run when
only carrier gas is leaving the GC column.

A segment of each reference
interferogram of N points is extracted,
treated as an N dimensional vector r,,

and used to construct a set of M <N
orthonormal basis vectors b, . This set of
basis vectors represents the staring
condition of pure carrier gas.

During the subsequent GC run the same
segment from each acquired interferogram
is used as a sample vector 5. This

sample vector is projected onto the
orthonormal set of basis vectors and
compared to its projection p by taking the
vector difference s - p. This procedure is
explained in Figure 11 for the case of just
two basis vectors, While p represents
the part of 5 due to pure carrier gas, the
difference s - p represenis deviations
therefram, i.e. the value of 5 - »p

constitutes the actual point of the
chromatogram trace.

b 4




t=—s -p

A practical example of the Gram-Schmidt
trace is shown in Figure 12 in comparison
with a conventional GC-FID {race. One
sees the excellent agreement between the
} two chromatograms and also the excellent
-1 sensitivity -of the Gram-Schmidt method.
The achievable sensitivity depends on the
setting of the Gram Schmidt parameters,
namely the number of points N per
vector, their offset O relative lo the
centerburst and the number A <N of
basis vectors (compare Figure 10). The
optimization of these parameters is still a
field of active research [8,10]. A good
parameter set may be obtained as follows
[

-  The offset 0 can be found empirically
by Inspecting the interferogram on the
display by selecting a slar poinl just
outside the strong features of the
centerburst. Depending on the type
of beam splitter and on elecironic
filtering, the optimum ofisel moy be
between 15 and 20 paints.

- The optimum number of basis vectors
depends on the speclrometer's
stability and should be found Letweaen
10 and 20.

- The optimum number of poin's per
vector ¥ depends on lhe spocira of
the investigated components and is
expected to be between 80 an:l 200,

L 4

As the computation time increases roughly
proportionally to the product of & and
N, It may be advisable to use values
smaller than the optimum ones if very high
time resolution is necessary.

Although our short overviews of the
various kinds of computations to be
performed by the minicomputer of an
FT-IR spectrometer is, of course, far from
complete, we shall now end this series
with some concluding remarks about the
required performance of the data system.

6 Typical Data System
Requirements

The development of fast scanning
interferometers in connection with HRGC
and the availability of extensive libraries
have increased the demand for speed and
storage capacity enormously in recent
years.

To get an idea of the speed and storage
requirements, we consider a HRGC run
with 10 - 20 scans per second at a
resolution of 8 cm™. Each scan consists
of 2048 data points of 18 bit each. The
incoming raw data are written into the
computers RAM by DMA either in
automatic hardware coadd mode (get
current content of a computer word, add

new data, write result back, advance
memory address) or in simple replace
mode at a rate of about 100 KHz. If every
single scan is to be stored on disk, this
corresponds to an average disk transfer
rate of 20 - 40 Kwords/second (= 60- 120
Kbytes/second with 24 bits/word). A disk
of 20 Mbyte capacity would be full after 5 -
10 minutes of GC run, During all this
DMA-activity & Gram-Schmidt and
possibly several window traces must be
computed and displayed. In case of
window traces a complete spectrum
calculation must also be performed.

In order to meet the speed requirements,
not only is sufficiently fast hardware
needed but also -and even more important
- an operating system with high disk
throughput and real time capability. |t
should be noted that most commercially
available operating systems for personal
computers would not be suited for HRGC
because their file organization is in-
adequate (no contiguous files), which
drastically reduces the transfer rate. In
connection with the necessary dedicated
hardware this explains why the mini-
computer of a FT-IR spectrometer is more
than just an ‘over-expensive personal
computer’.

The required disk space also seems to be
ever increasing, especially if large spectral
libraries of several tens of thousand
spectra are to be stored on a disk, which
is also used for GC-IR. Therefore, if
optical disks with capacities of several
gigabytes become reasonably priced in
the next few years, their use might well be
interesting.

Modern FT-IR scanners already allow for
more than 50 scans per second and new
16-bit ADC's permit sampling rates of 500
KHz, which calls for the development of
faster hardware and software. The future
will show where these developments will
lead.
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