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Understanding the properties of materials is important for reliably and accurately engineering
technology. In cases with high heat stress, the thermal conductivities are an important property of
potential materials. This is especially relevant for electrical engineering. Frequency domain thermal
reflectance, or FDTR, is a method for determining the thermal conductivities of materials. This
works by thermally pumping a sample with a laser beam of modulated intensity. The frequency of
the pump beam is changed, relating to the depth of heating in the sample. The phase shift of a
reflected probe beam is measured, leading to a graph of phase shift and frequency that can be used to
determine the thermal conductivity. FDTR relies on a fine-tuned optical alignment which prioritises
minimal noise and no overheating. In this paper various methods to ensure that the FDTR setup is
reading accurate thermal conductivities will be discussed, along with how to appropriately analyse
thermal conductivities from the resulting measurements. Finally, after obtaining accurate results of
the thermal conductivity of epitaxy grown AlN, there will be an exploration of the relation of the
thermal conductivity and the thickness of the sample.

I. INTRODUCTION

The thermal conductivity of a material is defined as its
ability to transfer heat. A sample (such as silica) which
has a low thermal conductivity, optimally conducts heat
from one place to another. On the other hand, a high con-
ductivity sample (such as silicon) will show a resistance
to thermal energy. Materials of high conductivity are
more useful in electronic components where overheating
presents a problem. As technology seeks to create the
same components with decreasing size, the thermal con-
ductivity of a thin-film sample is important. Non-invasive
measure of the thermal conductivity of nano-thin, or two-
dimensional, materials ensures that these materials are
not damaged. In this way, FDTR is useful for measuring
the thermal conductivity for a wide variety of thin film
samples—such as Aluminium Nitride.

Frequency domain thermal reflectance works by using
the following methods and components. First, there are
two lasers of different wavelengths. In the setup used
for this paper’s results, we use a 532nm green laser and
488nm blue laser as the probe and pump respectively.
The pump laser has a modulated intensity such that the
intensity is sinusoidal with a frequency which is varied
between approximately 2e4 and 2e7 Hertz. The frequency
determines the penetration depth of heating for the sam-
ple. For a higher frequency, the penetration depth is
small so the probe will measure the phase shift at this
point. Whereas, a lower frequency penetrates deeper
and will measure the phase shift of a position closer to
the substrate. A lock-in amplifier is used to modulate
these frequencies accurately. The system focuses both the
pump and probe beam towards the sample through an
objective. The received phase differences are plotted at
modulated frequencies and fitted to determine the thermal
conductivity of certain layers.

Samples used in this setup have a collection of un-

known and known values. Of these samples, usually be-
tween three and five layers, most of the relevant quantities
(thickness, thermal conductivity) should be known. By
knowing these values to a reasonable degree, the data can
be fitted to find a more reliable value for the unknowns
through Fourier analysis and the heat equation. Different
unknown attributes have different sensitivities to the fre-
quency of the modulated laser. In the case for Aluminium
Nitride samples, the interfacial thermal conductivities
and the thermal conductivity of the thin-film are fitted
with non-linear least squares for two of the three parame-
ters through several rotations until consistent values are
reached. The results found later in this paper all use this
iterative method. By rotating through two-parameter fits
of 3 different combinations for the total of three param-
eters, a convergence is found regardless of the starting
guesses for unknown values.[1]

II. FDTR SYSTEM AND TROUBLESHOOTING

Optical alignment is important in the FDTR setup.
The incident and reflected beams of both the pump and
probe laser need to be coaxially aligned for the results
to be reliable. If this is not the case, then the sample
will not be heated uniformly or in the same position as
where the probe is reading the phase shift. To ensure this
alignment, the beams should be directed beam through a
“mirror maze” or across any sizeable distance. The beams
should be checked at several points along this path to
check that they do not diverge. Some divergence at large
distances would be acceptable, as long as it is reliably
coaxial for the optical path length of the system. This is
checked for both the incident and reflected beams.

While the optical setup may be almost perfect, another
large source of error is the tilt stage for the sample. If
the tilt stage is set for one point on a sample, there is
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no guarantee that it is zeroed for other positions or for
another sample. Zeroing the tilt stage, means ensuring
that the interface is exactly perpendicular to the incoming
light, allowing the reflected light to return in exactly the
same plane. When the tilt stage is at an angle, it leads to
a characteristic shifting of low frequency results. While
this appears acceptable at higher frequencies, the lower
frequency shift can skew the fitted values.

A problem that persisted throughout our earlier exper-
imentation was a clear shift in our results. The graph
appeared to be shifted to lower frequencies, showing a
good curve but incorrect thermal conductivity when fitted.
At first, it appeared that there might be some error with
the internal clock of the lock-in amplifier since that would
lead to frequencies being displaced consistently. However,
it became clear that the problem was over-heating of the
sample. Especially for the lower thermal conductivity
silica, the problem showed a greater displacement. This
led to an extended project investigating the optimum
power balance for the pump and probe for high and low
thermal conductivity samples.

A. Balancing Pump Power

For a reference samples of both high and low thermal
conductivities, we tested where the value stabilised. It was
found that the thermal conductivity was more affected
by the pump laser than by the probe laser. This was
expected, since the pump is what is heating the sample.
For lower thermal conductivities it’s intuitive that this
value should be low so the sample does not experience
overheating that will skew the results. For higher thermal
conductivities it will need to be higher.

In Fig. 1, shown are the results of power analysis
for a gold on silica sample. A small window was tested
thoroughly to find the most stable point for future mea-
surements. This included balancing the overheating that
occurred with higher powers against the noise that is
introduced with lower powers. The resulting minimum of
11mW is now used for low thermal conductivity samples,
with a fixed high probe power of 0.04W. The probe power
should be kept as high as it can without damaging the
photodiode so to maximise the signal to noise ratio.

Following this, a higher thermal conductivity reference
sample was tested, giving a much higher optimal pump
power. Higher thermal conductivities are not so drasti-
cally affected by overheating, leading to a greater range
of acceptability around 70mW for thermal conductivi-
ties of approximately 100-200W m-1 K-1 and 100mW for
200-300W m-1 K-1. As a result of troubleshooting and
the power balancing analysis, our results become more
consistently reliable. In any case, the project that I was
initially meant to work on involved measuring the thermal
conductivities of AlN samples with differing thicknesses.
After finding that we can get reasonably accurate results
after two months of troubleshooting, it’s time for some
initial data. .

FIG. 1. Measured thermal conductivity with varying powers
of the pump laser. This shows a range of overheating that
occurs at higher powers, and an increase of noise at the lower
powers. The optimum power value is found as the minimum
of the quadratic which gives 11mW. The stability of this value
was tested, showing reliably consistent results within a percent
of error.

III. RESULTS AND ANALYSIS: EPITAXIAL
ALN THERMAL CONDUCTIVITY

The AlN (thin-film Aluminium Nitride) samples are
grown with three layers. The substrate is bulk AlN, while
the middle layer is epitaxial grown AlN of a certain thick-
ness, and the top layer is gold. The matrix representing
known and unknown values for the full sample thus has
five rows: three for the layers, and two for the interfaces.
The interface between bulk AlN and epitaxial grown AlN
is very large while the interface between epitaxial grown
AlN and Au is lower (yet still high). This is because
thermal conductivity is more efficient between two layers
of the same type of material. Results were taken for a
range of epitaxial grown AlN thicknesses between 100nm
and 3µm.

Sensitivity analysis determines how sensitive the phase
difference is to the value of the unknown parameter-this
is shown in Fig 2. In the case of AlN, this gives a general
trend of rising sensitivity for the thermal conductivity of
the epitaxial layer for a larger thickness. On the other
hand, the interfacial thermal conductivity between the
bulk AlN and epitaxial AlN has a generally decreasing
phase sensitivity for larger thicknesses. However, these
parameters are all unknown and are treated similarly
important in the fitting method. We have a good estimate
of the thermal conductivity of the AlN samples which
dictates our initial guess. Both interfacial values are
simultaneously fit through an initial iterations, then the
first interface and the epitaxial AlN is fitted, and finally
the second interface and epitaxial AlN. This is repeated
through over twenty cycles to eventually reach a converged
result which is recorded. The thicker the sample, the
closer the thermal conductivity tends towards the value
for bulk. The converged values are consistent despite the
initial guesses for the unknown values.
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FIG. 2. Sensitivity analysis of the unknown parameters of
the 200nm epitaxial AlN sample shows that the interfacial
thermal conductance of both interfaces (G1 for gold-eAlN;
G2 for eAlN-bulk AlN) and the thermal conductance of the
epitaxial layer (k) are relevant through the frequency range.
While being more sensitive at higher frequencies, a balanced
approach to fitting the data allows for the unknowns to slowly
converge to a point where they are each consistent in relation
to each other. At this point, which is reached regardless of
initial estimates, the data is optimally fitted. The sensitivity
analysis confirms that this is an important method for fitting
the data since each unknown is similarly sensitive.

FIG. 3. For a sample of Gold on 200nm Epitaxial grown
AlN on AlN bulk, we used FDTR to determine the thermal
conductivity. The raw data is in red while the best fit is The
optical alignment is shown to be near-perfect as the noise
profile of the data is not significant. When the alignment is
not fixed, lower frequency results drift up while characteristic
spikes appear at mid-high frequencies. The residue of the data
is the difference between the raw data and the expected data
according to the fitted curve. For this average of three runs,
the calculated thermal conductivity of the thin-layer AlN was
65.8 W m-1 K-1.

Fig. 3 shows our current data for the 200nm sample.
This will be repeated at least six times so that an average
thermal conductivity can be found. The thermal conduc-
tivity of all other thicknesses will be found to realise the
relation between thickness and thermal conductivity. The
focus on alignment and data analysis has improved upon
our initial results that had a high level of noise and a
large divergence from expected values.

IV. CONCLUSION

The thermal conductivity of thin film samples can be
determined through frequency domain thermoreflectance.
This method involves modulating a pump laser with a
frequency that is inversely proportional to the depth pen-
etrated. The second laser, the probe, then determines
the phase shift at this point. Using known and estimated
quantities, the data can then be fitted with some degree of
accuracy. The accuracy increases with an increasing num-
ber of iterations. However, the iterations should focus first
on the most sensitive parameters . After rotating through
these iterations several times, the unknowns will converge
into a consistent result regardless of the initial values.
Using this method, we find the thermal conductance of
a 200nm AlN sample near the theoretical expectations.
Finding these values accurately is important for these
materials since Aluminium Nitride is a large thermal
conductivity material. AlN can be epitaxially grown in
thin films while retaining a relatively high thermal con-
ductivity that tends towards 321 W m-1 K-1 for larger
thicknesses. This is useful in electrical components where
there will be a high level of heating. In conclusion, FDTR
is a good method of determining thermal conductivities
for nanofilms and AlN is a promising material for high
thermal conductivity requirements.
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Additive manufacturing (AM) has gained popularity over the last decade as a manufacturing
technique. Without the need of traditional machining methods, this technique has the ability to
create complex structures and shapes. One type of AM, lasered directed energy deposition (L-DED),
is emerging to be a new wave of manufacturing by having the potential to print metals and alloy
systems. We aim to understand the interactions of the metal particle interactions with the melt pool
in order to determine major parameters/factors of the process. Consequently, the new information
obtained would serve as the basis for further research in overcoming prominent challenges with
L-DED. This paper provides the methodology of developing a nozzle apparatus to better understand
these interactions. Trial and error has resulted in predicting that the certain model created could
be improved through a single-part design rather than a multi-part one. Also, the trajectory of
the powder particles can be further analyzed with a simpler nozzle model to study this particular
parameter.

I. INTRODUCTION

Additive manufacturing (AM) is the creation of three-
dimensional objects by “printing” materials, such as plas-
tic or metal, layer by layer. Commonly known as 3D
printing, this manufacturing technique has the ability
to produce sophisticated work without using traditional
machining methods. This paper specifically focuses on
lasered directed energy deposition (L-DED), a type of
AM that prints metals (and alloy systems) with a laser
beam as its heat source. Metallic powders are fed into
a powder hopper and proceed to a nozzle where they
are then ejected using pressurized inert carrier gas. As
shown in Fig. 1, the ejected particles travel towards a
substrate and melted by the laser beam at a common
point of trajectory. The melted powders then create a
melt pool that forms a layer on the substrate surface.

FIG. 1. Simplified L-DED Process

L-DED has the potential to applicable in a variety of in-
dustries such as biomedical, welding and cladding, repair,

bulk combinatorial alloy design, construction materials,
and hybrid additive manufacturing [2]. Although L-DED
presents numerous applications, challenges prevent this
technique from being commonly used. Due to the ran-
dom and unknown nature of particle interactions with the
dynamic melt pool, printed parts have inhomogeneous
structure and properties. This creates poor repeatability.
Furthermore, the past work of Haley et. el has docu-
mented that there is a low powder capture efficiency with
the L-DED process[1]. It was shown that particles tend
to impact and float on the melt pool surface before sub-
suming below. During this time period (of hundreds of
microseconds), incoming particles are shielded from being
melted by rebounding off its floating counterparts. The
challenges of L-DED can be strongly attributed to the fact
that the correlation of process parameters (like powder
impact velocity, particle residence time, nozzle geometry
and so on) and the interactions of powder particles in the
melt pool are poorly understood. We seek to determine
these particular major parameters/factors that impact
the interactions between powder particles and the melt
pool during L-DED. In order to do so, we need to study
the interaction of a single powder particle with the melt
pool at a time. It is easier to track and observe a single
particle-melt pool interaction rather than a cluster of par-
ticles. This paper discusses the development of a nozzle
and experimental apparatus to feed micro-sized powder
particles one at a time to achieve this feat. Through this,
we hope to better understand the precise workings of the
L-DED process and its parameters.

II. MATERIALS AND METHODS

A. Apparatus Set-Up

The L-DED lab set-up is shown below in Fig. 2. The
laser is controlled remotely via a laptop and computer
system. The printing enclosure is highlighted and has
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an approximately 38 cm sized hole at the side to insert
nozzle configuration.

FIG. 2. L-DED Set-Up

First, a computer-aided design (CAD) of an initial
model was drafted. The design consisted of a powder
hopper (1), spring-loaded valve (2), a threaded connector
pipe (3), a plastic threaded adapter (4), three-way distil-
lation adapter (5), a glass vacuum adapter straight with
a 24/40 outer joint (6), a glass vacuum adapter straight
with a 24/40 inner joint (7), and a 0.16 mm glass capillary
(8). Fig. 3 shows the described model below.

FIG. 3. Initial Nozzle Apparatus Model

Not labelled is the small piece of a rubber stopper that
was cut out to fit into the nozzle outlet adapter opening.
A size 1 sewing needle was pierced through the middle of
the small rubber piece in order to create a small hole to
insert the glass capillary. This small rubber piecing was
able to seal the vacuum adapter opening in connection
to the glass capillary to lessen the amount of air leakage.
This specific connection is indicated in Fig. 4.

FIG. 4. Nozzle Adapter and Glass Capillary Connection

In addition to the nozzle apparatus, plumber sealant
and Teflon tape were used to seal the threads and connec-
tions so that there would be also be lessened air leakage.
A no.8 rubber stopper was also used to seal the printing
enclosure hole to steady the apparatus when in use.

When test running the initial design with pressurized
air, the nozzle outlet adapter flew off the apparatus due
to air escaping through its connection with the three-
way distillation adapter. This meant that the plumber
sealant was not enough to hold it in place, and thus
black electrical tape was wrapped around the 24/40 inner
joint to fill in the connection gap. The tape was then
used to reinforce the separated connection to stop the air
from leaking through it, and to stop the adapter from
flying off. It was also revealed that the carrier inlet gas
adapter of the initial design was incompatible with the
pressurized air hose fitting. Fig. 5 showcases that the
glass vacuum adapter straight with a 24/40 outer joint
was replaced with another threaded connector pipe and
plastic threaded adapter set.

FIG. 5. Modified Nozzle Apparatus Model
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The threaded connector pipe was able to screw perfectly
into the carrier gas hose fitting. This secondary iteration
of the nozzle apparatus was then tested to see if this
design was viable to observe the micro particles in action.
The assembled model can be seen in Fig. 6 below.

FIG. 6. Assembled Nozzle Apparatus

B. Experiments

It was decided to use Inconel-625 as the testing powder
particles due to its high stability and varied particle size
(45 to 150 µm). Since the glass capillary has a tip size
of 160 µm, it was estimated to shoot out individual or
small groups of particles at a time. This would make
observing the particle-melt pool interactions easier than
huge groups coming out.

Prior to using the L-DED set-up, the nozzle apparatus
was tested by itself without the requirement of a laser.
The apparatus was held up by a support stand and
clamp. It was estimated that distance from capillary tip
to bottom of printing enclosure would be 5 centimeters
and the projected ejection velocity would be 10 meters
per second. The calculation below shows that the time it
would take a single particle to travel that distance would
be 0.005 seconds or 5 milliseconds.

Particle Travel Time

=
5 cm

10 m/s
=

0.05 m

10 m/s
= 0.005 seconds = 5 milliseconds

(1)

It was concluded that a recording device would require
a frame rate of 200 frames per second (FPS) with the
calculation generated below. This frame rate would
have the ability to capture the particle at that travel
time with the same resulting particle travel time as before.

Particle Travel Time

=
1 second

200 frames
= 0.005 seconds = 5 milliseconds (2)

Newer iPhone models (8 or greater) can record slo-
mo videos at 240 FPS [3]. With the current equipment

at hand, it was decided that an iPhone 8 would be the
right choice as a recording device at these experimental
stages. It would give us a good indication on the required
camera specifications at later stages of the project. The
room lights were turned off, a flashlight was shone in
the trajectory area, and a dark red backdrop was placed
in efforts to make the powder particles exiting the glass
capillary more obvious as illustrated below in Fig. 7.

FIG. 7. Dark, Red Background

Test running the modified nozzle apparatus design pre-
sented numerous flaws. First, with the pressurized hose
inserted into the nozzle system via hose, there were still
air leaks arising between the part connections. This would
cause a decrease in the final nozzle velocity as there is less
force to push the particles through. At higher pressures,
there were concerns with parts flying off again. Thus, only
5 PSI was used during these stages. Furthermore, when
the valve was open to release the particles from the hop-
per to the three-way distillation adapter the pressurized
air flowed up the valve and hopper. Fluid, such as air,
flows from areas with higher energy levels to lower ones.
This caused an increase in pressure of the powder hopper,
and resulted in the most of the particles unable to flow
downward into the three-way adapter. Those that did
got stuck in the nozzle adapter due to the larger diameter
contrast of the design, and none went through the glass
capillary.

After a multitude of thorough test runs, the same over-
lying problems of the design kept persisting. Thus, we
looked toward a simpler model of the proposed set-up.
The same dark, red background and flashlight component
of the modified design nozzle apparatus was kept. Inconel-
625, an iPhone 8 as the recording device and the 5 PSI as
the air pressure was also kept constant from the previous
methods. However now with the support stand and clamp,
the clamp gap was filled in with plumber sealant. Instead
of looking at micro-particle and melt pool interactions, we
sought to find powder trajectory parameters. A 500 µm
glass capillary tip was used instead to ensure the ability
to observe the powder trajectory. About 0.001 grams
of Inconel-625 particles was meticulously inserted in the
capillary tip. Once the glass capillary was placed and
set in the plumber sealant, the pressurized air would be
pushed through the other end and forced to eject from
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the tip, all while being recorded in slow motion with an
iPhone 8.

III. RESULTS AND FUTURE DIRECTIONS

Unfortunately, mixed data was captured with the mod-
ified design and thus viable data analysis could not con-
ducted. However, it can be said that other designs of a
nozzle apparatus should be looked at. Instead of having
several different parts and causing air leaks through the
connections, a single part should act as a nozzle. Possibly,
a custom-made device could be modelled and sent out
to be built by field experts (depending on the materials
decided). Unlike the model discussed in this paper, this
singular device would also be smaller in diameter. This
would lessen the amount of particle loss as it goes through
the apparatus. The proposed single part could also be
a powder spray gun, commonly used for powder paints,
but the issue of clogging could hinder this method. Hav-
ing some way to control the powder flow would increase
the efficiency of this design. Thus, further research in a
unique particle spray apparatus should be looked into.

With the simpler set-up, a cluster of powder trajectories
could be observed. Shown in Figure 8 is a still image of
powders being ejected from the capillary tip.

FIG. 8. Powder Trajectory of a Simpler Model

Using the program ImageJ, the particles could be placed
in a black and white, binary system. Figure 9 illustrates
an image of of the particle trajectory when processed
through ImageJ.

The cluster of white pixels coming from the upper, left
corner and diverging outward are the powder particles.
They are outlined in a yellow border. For future analysis,
the ratio of white pixels over that total amount of pixels
(black and white) could be determined in order to see the
changing volume of the powder trajectory as it travels
further out of the nozzle. Not to mention, by finding the
trajectory patterns of the nozzle it would be easier to
pinpoint the exact location the cloud of particles would
hit on the substrate to increase the particle capture rate
of the laser system when printing.

FIG. 9. Powder Trajectory in a Binary System

Additionally, a recording device with a higher magnifi-
cation specification or a lens system should be considered.
Although none of the Inconel-625 particles went through
the 160 µm capillary tip for the modified design, the par-
ticles stuck in the nozzle adapter were difficult to observe
due to their small size. Also, with the simpler model the
iPhone 8 camera could not provide enough resolution and
contrast. Since it was difficult to eject a single particle, it
was difficult to track the particle velocity at such a lower
fps. Thus, a higher quality set-up consisting of multiple
cameras and lens systems, as demonstrated in Haley 2019,
should be given greater attention to look into to give more
detailed data[3].

IV. CONCLUSIONS

Utilizing a nozzle model as seen in Fig. 5 and 6 should
be further revised to study micro-particle interactions
with the melt pool. It was not able to eject Inconel-625
particles through the 160 µm glass capillary tip due to
pressure build up, particle loss, and air leaks. Future
work to be considered concerning a single-part device and
the recording set-up is highly encouraged. The trajectory
of the powders can also be further explored to predict the
area of which the powders would impact the substrate in
order to possibly increase the powder capture rate. This
study could be directly translated to a more advanced
and working nozzle model for single particle observations.
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Trapping Light to Rewire Organic Semiconductors 
 

Alison Park, Scott Renken, Andrew Musser 
 

Abstract  
The phenom of strong exciton-photon coupling in photonic structures results in a 

quasiparticle known as the polariton. The polariton has still yet to be largely explored for organic 

materials as previous scientific explorations have focused on inorganic systems. There is a value 

in exploring organic systems to see how and if polariton behavior differs to better tune their 

properties for commercial design. Organic polaritons have great potential for applications in 

carbon-based semiconductors, which see use in solar cells and OLED displays. This paper 

focuses on optical planar microcavity structures being created to further understand the inducing 

conditions and energetic behavior of the polariton.  

 

 

Introduction & Background  
 

The semiconductor industry is 

present in almost every aspect of the 

modern-day life and serves as an essential 

component for all electronic devices. They 

are the centripetal force for means of 

communication, computing, healthcare, and 

transportation by providing the ability to 

control the electrical conductivity within 

devices in the solid state. The current 

forefront semiconductor materials are 

silicon, germanium, and gallium arsenide. 

Of these, silicon is most notable for its low 

raw cost, ease in doping processing, and 

effective temperature range. Recent research 

pursuits, however, have discovered that 

certain organic materials can provide similar 

functions to silicon semiconductors.  

Organic semiconductors do not have 

to be based on a rigid substrate structure as 

their inorganic counterparts. Thus, organic 

materials can provide a much more flexible 

use in their mechanical design while also 

having the added benefit of being a 

significantly more affordable product. The 

large limiting factor remains to be that the 

current energetic efficiencies of silicon 

semiconductors still outweigh that of 

organics. Although, carbon-based organic 

semiconductors have seen some success in 

developing processing means that find 

planes of conductivity. 

Strong light-matter coupling can re-

arrange the exciton energies in organic 

semiconductors (2). And when the cavity 

mode exists at the same wavelength as the 

last absorption peak of the organic material, 

a quasi-particle called a polariton will form. 

The existence of the polariton allows for the 

organic material to have a new absorbance 

state at lower energies, which be beneficial 

in the design for future electronic devices.  

There is still much to be learned 

about the properties of organic 

semiconductors. To simulate and better 

understand their functional behavior, optical 

planar microcavities can be constructed. The 

cavities can then be studied by employing 

light spectroscopy techniques. 

A planar microcavity is comprised of 

two mirrors that are separated by a certain 

thickness ‘L' and within this region the 

organic material is placed. Commonly, 

metallic films or dielectric distributed Bragg 

reflectors (DBRs) are used for the 

microcavity’s mirrors. DBRs are designed 

with alternating layers of transparent 

materials with high and low refractive 

indices. These layers create a highly 
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reflective structure, as opposed to the typical 

optical absorption loss metallic mirrors face 

(1). Thus, DBRs are often preferred over 

metallic mirrors.  

 

Experimental Section 
 

Microcavity Construction 

A hybrid metal-DBR cavity was 

prepared using an electron-beam 

evaporation spluttering technique and 

measured using a profilometer. The DBR 

consisted of alternating TiO2 and SiO2 

layers, with their planned and observed 

thicknesses noted in Table 1. A silver layer 

of 30 nm was deposited as the cavity’s 

uppermost layer and this thickness was 

confirmed by the evaporator’s profilometer. 

While the DBR has a higher Q-factor and 

provides for greater absorption, it requires a 

significant amount of processing (roughly 

16 continuous hours for the DBR deposition 

described). The DBR is also not a removable 

layer as opposed to the silver. Thus, as a 

matter of convenience in aspects of time and 

labor, a hybrid construction was chosen.  

 

Table 1: DBR Planned and Observed 

Thickness 

Layer * Planned 

Thickness 

(Angstroms) 

Observed 

Thickness 

(Angstroms) 

TiO2 507 507 

SiO2 751 751 

TiO2 507 507 

SiO2 751 751 

TiO2 507 507 

SiO2 751 920 

TiO2 507 507 

SiO2 751 751 

TiO2 507 507 

SiO2 751 751 

TiO2 507 507 

 

*Reads bottom (first deposition) to top (last 

deposition) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Hybrid Metal-DBR cavity 

construction 

 

Organic Layer 

DBBA-Anthracene was chosen for it 

being an organic material that is a strong 

absorber and for already having previously 

published success of displaying a strong 

coupling regime. Multiple microcavities of 

varying concentrations and thicknesses of 

the organic layer were created. The 

attempted concentrations include 6.25wt%, 

12.5wt%, 22wt%, and 50wt%. Toluene was 

used as the solvent.  

To deem the most successful 

coupling regime, the cavities were then 

analyzed by using their angle dependent 

reflectivity measurements to plot heat maps. 

These plots of wavelength vs angle provide 

a clear visual of the polariton’s presence 

with the splitting of the absorption peak.  

 

 

Physical and Theoretical Verification 

To verify the physical thickness of 

the organic layer, a MircoMechanical 

Analyzer was used on a ‘blank’ cavity—

 

 

 

 

 

 

Air 
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cavity without the organic material in the 

polystyrene matrix. The ‘blank’ underwent 

the same spin coating deposition as the 

hybrid cavity with the organic material and 

is expected to return similar values.  

In addition, a computational 

modeling program based on a transfer 

matrix thin film theory was utilized to 

theoretically confirm the microcavity’s 

strong coupling behavior.  

 

Results and Discussion 
 

The constructed microcavities 

underwent angle-dependent reflectivity 

measurements. The resulting data was used 

to plot a heat map of the reflectivity 

intensities to visually display any potential 

polariton behavior. The strongest anti 

crossing behavior was present for DBBA of 

22wt%.  

Figure 2: Hybrid Metal-DBR Cavity of 

22wt% DBBA-Anthracene Reflectivity Map 

 

The drops in reflectivity confirm that 

the molecule has a new absorption state at a 

lower energy value. 

To further verify polariton’s 

presence a transfer matrix model was used 

to simulate the cavity’s expected behavior. 

The model is based on a multilayer film 

theory and parameters such as thickness, 

exciton wavelength, and index of refraction 

were inputted to describe the cavity. When 

the organic layer’s thickness was described 

as 480 nm, the simulation provided a 

reflectivity heat map that strongly correlated 

to the experimental measurements that were 

taken. 

 

 
Figure 3: Hybrid Cavity Simulation Result 

for 480 nm 

 

In addition, the micromechanical 

analyzer described the blank cavity to have a 

thickness in the range of 510-580 nm.  

The theoretical simulation using the 

transfer matrix and the physical 

measurement data of the organic layer’s 

thickness corroborate and suggest that the 

layer is indeed in the realm of 500 nm. 

Although this value varies significantly from 

the intended 162 nm, we can attribute this 

difference to the inconsistency of the spin-

coat method.  

 

Conclusion 
 

To conclude, 22wt% DBBA-

Anthracene in a Toluene solvent was 

confirmed to show polariton behavior. 
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While the exact thickness of the constructed 

microcavity remains to be unable to be fully 

confirmed, the results suggests that it was 

around 500 nm.  

To further investigate the polariton’s 

behavior, the coupled oscillator method 

could be explored to better define the 

energetic behavior. It would also be 

interesting to pursue time-resolved 

measurements to create polariton ‘movies.’ 
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The performance of Kohn-Sham density-functional theory is governed by the accuracy of a density functional
approximation (DFA) to approximate the exchange-correlation energy. Historically, DFAs are constructed
using either non-empirical techniques that satisfy known quantum mechanical constraints, or semi-empirical
techniques that fit the functional to benchmark data. In this work a method to construct DFAs that are
both constraint satisfying and data driven is presented. This method is developed by applying cubic basis
splines (B-Splines) optimized with penalization splines (P-Splines) to construct the inhomogeneity correction
factor. A proof of concept of this method is demonstrated by the resulting global hybrid generalized gradient
approximation, CASE21. CASE21 satisfies all but one of the constraints satisfied by the popular PBE0
functional while also being data-driven. This constraint satisfying semi-empirical functional is shown to
outperform PBE0 on many chemical properties.

INTRODUCTION

Theoretical chemistry investigates chemical structure
and dynamics using the tools of quantum mechanics,
statistical mechanics, and computation. A central aim
for theoretical chemistry is to predict results and provide
explanations for experiment. This quest is contributed
to by three main pillars of theory: theory development,
algorithms and implementation, and application. All
of these aspects work in conjunction to develop a
robust theoretical framework for investigating modern
chemistry. This work is focused on method development,
which seeks to build and improve upon foundational
tools within theoretical chemistry.

Kohn-Sham density-functional theory1,2 (KS-DFT) is
the most popular method for modelling systems quan-
tum mechanically. Within the various computational ap-
proaches to the study of electrons in matter, KS-DFT
balances performance and accuracy making it the com-
putational workhorse in physics, materials science, and
chemistry communities. The total ground-state energy
in KS-DFT may be calculated by

EDFT
KS = Ts[{φ}] + ENN + EeN [ρ] + J [ρ] + Exc[ρ] (1)

where Ts[{φ}] is the mean-field kinetic energy, ENN

is the nuclear-nuclear potential energy, EeN is the
electron-nuclear potential energy, J [ρ] is the Coulombic
repulsion potential energy, and Exc is the exchange-
correlation energy which contains the non-trivial kinetic
and non-classical electron-electron interaction energies
which bridge the gap between the Hartree approximation
and the exact solution to the energy. As the first four

a)Electronic mail: tkq2@cornell.edu

terms in Eq. (1) are known exactly, all approximation in
KS-DFT lies within the Exc term.

Density functional approximations (DFA) are devel-
oped to approximate the Exc. Chemists and physicists
alike have developed many DFAs, or more generally
functionals, to provide quantitative information con-
cerning various many-bodied systems. A common goal
in DFA development is to increase the accuracy of the
functional while decreasing the computational cost.
Unique to KS-DFT, the addition of more quantum
mechanical information to a DFA does not guarantee
improved accuracy from the functional. However, in
2001 Perdew constructed a now infamous "Jacob’s
ladder" of KS-DFT approximations which outlines a
hierarchy of exchange-correlation DFAs where each
successive rung contains more sophisticated information
concerning the electron density3. The bottom of the
ladder rests in the Hartree realm where there is no
contribution from exchange-correlation energy in the
functional (Exc = 0). The first rung of five is the local
spin density approximation (LSDA), the simplest of
the exchange-correlation functionals as it only makes
use of the electron density (ρ). The LSDA may be
exact for the infinite uniform electron gas (UEG) limit,
however, this approximation is inaccurate in systems of
inhomogenous electron density such as systems involving
atoms and molecules. The second rung is the generalized
gradient approximation (GGA), which incorporates the
density gradient (∇ρ) to better account for the effects of
inhomogeneity in the electron density on Exc. Notable
GGA functionals include Perdew’s PBE4 and Becke’s
BLYP5,6.The third rung is the meta-GGA which includes
the Laplacian of the electron-density (∇2ρ) or the kinetic
energy density leading to functionals such as TPSS7

and SCAN8. The fourth rung is the global hybrid GGA
which incorporates exact-exchange (Exx) into the GGA
type functional to partially account for self-interaction
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error, a functionals inability to distinguish between
interactions between two particles or interaction of a
particle with itself. This mixing of Exx and Exc has
produced some of the most popular functionals such
as PBE09, B3LYP10, and B9711. The fifth and last
identified rung below the "heavens" of chemical accuracy
is the double hybrid, which use information from the
wave-functions, including the unoccupied orbitals, for
the exchange and correlation expressions. With each
successive rung the sophistication of the functional in-
creases, however, with increased sophistication involves
increased computational cost. Therefore, in order to
effectively implement a DFA one must weigh complexity
and computation to fit the needs of the application.

There have been many approaches to develop DFAs,
most broadly the two categories of DFAs fall within non-
empirical and semi-empirical strategies. Non-empirical
DFAs are designed to ensure the functional satisfies
known quantum mechanical constraints. This approach
lends itself to greater transferability among systems, a
desirable trait in physics communities. Notable non-
empirical functionals include PBE, TPSS, and SCAN. In
contrast, semi-empirical DFAs are designed by fitting a
DFA to benchmark data, generally using a power series
expression for the inhomogenity correction factor (ICF)
whereby the coefficients are determined almost exclu-
sively by the reference data. This data-driven approach
tends to have greater accuracy than a non-empirical
functional on chemical systems similar to those used to
train the functional. This focused accuracy is desirable
in chemistry communities. A potential concern for
semi-empirical methods is over-fitting. Ridge-regression
is often implemented to avoid this by penalizing the
magnitude of the coefficients used to fit the functional.
The semi-empirical approach is responsible for function-
als such as B3LYP, B97, and ωB97X-V12.

In this work we aim to unite transferability and accu-
racy by creating a method that combines constraint sat-
isfying and data driven characteristics into a single func-
tional. A proof-of-concept of this method is presented
in the global hybrid GGA CASE21 – Constrained And
Smoothed semi-Empirical 2021. CASE21 approximates
the Exc by separating the exchange and correlation con-
tributions and incorporating 25% Exx.

ECASE21
xc =

3

4
ECASE21

x +
1

4
Exx + ECASE21

c (2)

The ECASE21
x and ECASE21

c terms are similarly expressed
in a multiplicative form as

ECASE21
a [ρ] =

∫
ρεLDA

a (ρ)Fa(ua)dr (3)

where a = x or c to represent the exchange and correla-
tion components, respectively. ρ is the electron density,
εLDA
a is the exchange energy density per particle of the
local density approximation (LDA) when a = x and

FIG. 1. B-spline basis functions (rainbow) that construct the
CASE21 ICFs. A linear combination of each B-Spline (Bi)
scaled by a coefficients (ci), represented by the equation for
F (u), forms the resulting smooth function (black). ci = 1/2
for i ≤ 5 representing a linear function of B-Splines, ci for
i ≥ 6 represents a flexible function of the B-Splines.

the correlation energy density per particle of the PW92
LDA correlation functional13 when a = c. Lastly, Fa(ua)
is the ICF. The functional form of Ea can be made,
within the training procedure, to satisfy all exchange
constraints and all but one of the correlation constraints
that are satisfied by the PBE0 functional. However, in
principle this method may be used to satisfy all of the
PBE0 correlation constraints by adopting the EPBE0

c

functional form.

The method presented in this work utilizes basis splines
(B-Splines)14 to form the basis functions of the exchange
and correlation ICFs. These piece-wise cubic uniform B-
splines provide local support under each spline which is
scaled by a coefficient (ci) as seen in FIG. 1. A linear
combination these splines form a function that is highly
flexible and continuous up until the n - 2 derivative where
n is the order of the splines (in this case n = 3). The ci of
each spline make up the ’backbone’ of the resulting func-
tion, therefore by fitting these ci to benchmark data we
may construct an ICF that is data-driven. Application
of these B-Splines in the functional form given in Eq. (3)
allows both satisfaction of constraints while being semi-
empirical.

In order to optimize CASE21 and avoid overfitting
after training the functional we implement penalization
splines (P-Splines)15. P-Splines penalize ”wiggliness” in
the ICF ensuring smoothness by applying a finite differ-
ence penalty on the B-Splines ci.This method determines
{ci} by minimizing the loss function represented by

Loss = goodness of fit +
λ × smoothness term

+ constraints term (4)

14
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FIG. 2. The impact of λ on the CASE21 exchange ICF, whereby the level of penalization (magnitude of λ) is inversely
proportional to the wiggliness in the functional. This demonstrates the enforcement of smoothness as a constraint in CASE21.

where λ is the hyperparameter responsible for the degree
of smoothing that takes place by these P-Splines on the
fit ICF. An example of this relationship may be seen in
FIG. 2 where the magnitude of λ controls the degree
of penalization and therefore smoothness on the ICF.
As λ → ∞ the ICF tends toward linearity. We may
optimize this balance between flexibility and smoothness
to assign a λ value that maintains smoothness in the
ICF while still allowing data driven influence.

The flexibility of applying B-Splines as a basis func-
tion not only allows the functional to be semi-empirical
but also allows the satisfaction of constraints. To demon-
strate this constraint satisfaction the exchange and cor-
relation ICFs may be represented as linear functions.

Fx(ux) = 1 + 0.804× ux (5)
Fc(uc) = 1− uc (6)

The finite-domain variable ua is constructed such that
these parameter-free expressions for Fa(ua) maintain
satisfaction of all intended constraints and therefore may
be used to visualize these constraints in FIG. 3. The
piece-wise nature of the splines allow the enforcement
of all explicit constraints (e.g. UEG limit and rapidly
varying density limit) to only depend on the B-splines in
the u domain where the constraints are being enforced.
Therefore the constraints may be treated as priors to
be satisfied while all of the unconstrained splines may
remain flexible to be fit to data. All of the implicit con-
straints on the functional (e.g. Lieb-Oxford Bound and
negativity of the exchange energy) may be implemented
with a generalized form of Tikhonov regression. In this
way the CASE21 functional satisfies all of the following
constraints: exact exchange spin scaling, uniform den-
sity scaling for exchange, UEG limit for exchange and
correlation, UEG linear response, Lieb-Oxford bound,
negativity of the exchange energy, second order gradient
response for correlation, rapidly varying density limit
for correlation, non-positivity of the correlation energy,

FIG. 3. Linear representations of the exchange (blue) and
correlation (orange) ICFs and the implicit and explicit con-
straints they satisfy within the u domain.

and lastly ICF smoothness. However, the representation
of ECASE21

c in Eq. (3) does not allow the enforcement of
proper uniform scaling to the high-density limit in the
correlation that PBE0 does satisfy.

The functional training procedure uses three sets of
benchmark data: the training, validation, and testing
set. The training set is used to create many {ci} each
corresponding to and individual λ. The validation set
is used to determine which λ minimizes the weighted
root-mean-squred error (wRMSE) on this set. This
optimized λ is used to refit the functional on the training
and validation sets. The testing data is then used to
evaluate the fit functional. The CASE21 training and
validation sets contain a small number of chemical
properties where as the testing set contains a diverse
range of data, therefore achieving good performance on
the testing set shows transferability of the functional.
The CASE21 training set contains heavy atom transfer
energies (HAT), the validation set contains total at-
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FIG. 4. CASE21 exchange and correlation ICFs for 6 (blue),
10 (green), 15 (yellow), and 30 (red) B-spline cases with linear
unfit ICFs (black dashed). Any deviation of the ICFs from
linearity is purely data driven.

omization energies (TAE), and absolute energies (AE).
The testing set contains reaction energies (RXN), bond
dissociation energies (BDE), proton affinities (PA),
reaction barrier heights (BH), ionization potentials (IP),
electron affinities (EA), isomerization energies (IE), and
non-covalent interaction energies (NCI).

This training procedure was used to fit the CASE21
ICFs, using a ∂2f

∂x2 penalization for λ, on 6, 10, 15, and
30 splines. These ICFs are depicted in FIG. 4 along
with the linear ICFs (black dashed) from Eqs. (5) and
(6). Since the parameter free ICFs may be plotted as
linear functions, any deviation from linearity in the
CASE21 ICFs indicate a direct data-driven influence
that a purely constraint-satisfying functional would not
have. The resulting flexibility in these optimized ICFs
cannot be obtained with a low order polynomial as the
basis support of each spline provides a more domain
independent approach to creating a functional. Plotting
the ICFs with differing numbers of splines shows there
is little dependence of the ICF on the number of splines
with slight deviation in the u→ 1 region of the exchange
ICF. The correlation ICF on the other hand maintains a
more uniform consistency between the spline cases. The
10 spline case was chosen as the final CASE21 functional
as it maintains flexibility while not risking overfitting
with too many splines. The 10 spline ICF also falls
within the middle of the ICFs being bounded above and
below by the 30 and 6 spline cases, respectively in the

FIG. 5. MAE in kcal/mol of the CASE21 functional com-
pared to PBE0 by chemical property, with the number of data
points in each property indicated below each property label.
Negative labels (green) indicate how much CASE21 improves
upon the PBE0 error and positive labels (red) indicates how
much greater the MAE of CASE21 is than PBE0. The data
contains: HAT – heavy atom transfer energies, TAE – total
atomization energies, AE – absolute energies, RXN – reac-
tion energies, BDE – bond dissociation energies, PA – proton
affinities, BH – reaction barrier heights, IP – ionization po-
tentials, EA – electron affinities, IE – isomerization energies,
and NCI – non-covalent interaction energies.

exchange. CASE21 contains 1.27 degrees of freedom, a
further testament to ensuring the 10 spline case is not
overfit.

The CASE21 functional was compared with PBE0 to
evaluate the accuracy of the DFA against a widely used
constraint satisfying functional. The results of this error
analysis may be seen in FIG. 5 where the mean abso-
lute errors (MAE) of CASE21 and PBE0 are compared
and grouped by various chemical properties. Given that
CASE21 was trained and validated on heavy atom trans-
fer energies, total atomization energies, and absolute en-
ergies we see measurable improvement from the PBE0
functional, as expected. The most meaningful evaluation
lies within comparing the functionals to diverse unknown
data in the testing set. Within this set CASE21 outper-
forms PBE0 on seven out of the eight chemical proper-
ties with the most substantial improvements on reaction
energies, bond dissociation energies, and electron affini-
ties. CASE21 has a greater MAE than PBE0 on ioniza-
tion potentials, while the two functionals are comparable
on proton affinites. This over-all general improvement
of CASE21 on the testing data, despite being trained
on a very few types of chemical properties demonstrates
that uniting constraint satisfaction with a semi-empirical
functional form may produce a more transferable and ac-
curate functional. This method to unite constraints and
data provides a tool that may be used to improve upon,
and build future DFAs.

16



5

CONCLUSIONS

Within this work we presented a method that uti-
lizes B-Splines, optimized with P-Splines, to train a con-
straint satisfying and data driven DFA. As a proof-of-
concept for this method the semi-empirical global hybrid
GGA CASE21 was constructed, satisfying 11 quantum
mechanical constraints. This functional demonstrated
both transferability and accuracy by out-preforming the
purely constraint satisfying PBE0 functional on a di-
verse set of chemical properties. Future work consists
of self-consistently optimizing CASE21 and applying this
method of B-Splines to a double-hybrid GGA.
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Abstract 

 Typical methods of analyzing cellular proliferation such as hemocytometer assays disturb 

cell clusters and yield poor temporal resolution. Therefore, our group developed a novel optical 

cell proliferation counting apparatus to more accurately observe the social amoeba Dictyostelium 

discoideum. This paper describes a computational technique to analyze pulse data generated 

from the counting apparatus. Efficacy of the technique is shown by analyzing colloidal samples 

and comparing their pulse height distributions to those of live samples. Finally, modeling 

attempts of D. discoideum proliferation dynamics are furthered by providing evidence counter to 

the current prevailing hypotheses of clustering behavior. 

Introduction 

The transition from unicellular to multicellular life is a key step in the history of 

evolution, occurring independently in the development of algae, plants, animals, and fungi (6). 

Once formed, multicellular organisms experience increased fitness due to cellular differentiation 

and the resulting functional specialization (4, 14). This adaptation is apparent in the starvation 

state of the cellular slime mold Dictyostelium discoideum. When starved, D. discoideum 

aggregates into a multicellular organism with differentiated cells (5). This complex behavior has 

merited intense study into the many mechanisms behind D. discoideum, with the organism 

eventually becoming a common NIH model (11). Therefore, the organism was a natural starting 

point to explore the origins of multicellular life. 

A commonly proposed evolutionary mechanism for the development of multicellular 

organisms starts with the formation of simple undifferentiated cell clusters (9, 10). It is widely 

known that D. discoideum exhibits multicellular behavior in the starvation state. Less commonly 

studied however is the behavior that occurs during the organism’s vegetative state, namely the 

lagging and exponential phases. The lag phase occurs in many cellular organisms and is 

characterized by a period of slower growth before typical exponential growth (2, 8). Despite over 

a century of observation, the biological processes and spatiotemporal dynamics that occur during 

the lag phase and subsequent transition into log phase are poorly understood (12). Biologists 

have long assumed that the lag phase allows for cells to acclimate to changes in culturing 

environment such as available food, temperature, cell density, and surrounding microorganisms 

(11).  

When a lag-log transition is purely mediated by density, the organism is said to be subject 

to an Allee effect (1). In a word, the Allee effect is characterized by the presence of 

‘undercrowding’, or the ability of low cell density alone to decrease cellular growth rate (13). 

Although laboratory guidelines have mentioned the effect of density on D. discoideum growth 

18



rate (5), only recently has rigorous experiment been undertaken to demonstrate the presence of 

an Allee effect (7). A further observation in the proliferation dynamics of D. discoideum is a high 

degree of variability in the lagging phase. It typically lasts around 29 hours, but may range in 

length from -20 to +120 hours (7).  

The Allee effect may arise from various cell communication or signaling mechanisms. 

Juxtacrine mechanisms are contact-mediated, the cells sense each other’s presence through 

physical contact. Endocrine mechanisms are governed by growth factors that are produced by the 

cells and then uniformly distributed throughout the medium. Previous works have provided 

evidence against the juxtacrine mechanism by observing no change in lag phase even when the 

degree of cell-cell contact was altered (7). The works’ formulation of the endocrine mechanism 

also did not approach a similar degree of variation in the lag phase compared to what is observed 

in experiment (7). The next models to be tested were cluster-based theories. Cluster-based 

endocrine signaling posits that growth factor is produced by cellular clusters and affects cells 

throughout the whole sample. In paracrine signaling, growth factor is only produced within 

clusters, and affects only cells within that cluster. These cluster-based models are far from 

perfect, but offer a reasonable and falsifiable hypothesis to examine.  

To experimentally investigate the clustering hypotheses, we used a novel optical cell 

passage counter (OCPC) assay (7). This assay provided the capability to study cell populations in 

vitro, with high temporal resolution, and at a wide range of cell densities. The advantages of 

studying cell populations in vitro are clear. When counting cells with a typical hemocytometer 

assay, the cells are transferred to a counting chamber with a pipette, introducing shear forces 

which are likely to destroy clusters. The capability to study cell populations over indefinite time 

periods and a range of cell densities allowed the capturing of highly precise proliferation 

dynamics. The OCPC assay has proven to be a powerful tool to study cell populations, but the 

data it generates can be difficult to analyze. A data pipeline was developed in MATLAB that 

allows for better data analysis and visualization than ever before. Through this new technique, 

we have gained biological insight that will push forward research into the cellular dynamics that 

occur during the proliferation of D. discoideum colonies. 

Methods 

Automated Continuous Counting Method 

 The OCPC setup was developed to obtain measurements of cell density in an automated, 

continuous fashion over long time periods (Figure 3) (7). The setup involves a red laser diode 

source focused onto the center of a test chamber by a low-power objective lens. The chamber is a 

0.75-inch diameter cut test tube capped with a rubber septum, and can hold 10 mL of liquid. A 

magnetic stir bar at the bottom of the cell is driven by a permanent magnet rotated by a stepper 

motor. A relay lens images the laser-illuminated region of the sample onto a fast, single-pixel 

light detector. All components are covered in a light-shielding box to minimize noise. 

 The data obtained from the counter is in the form of voltages outputted from the light 

detector. These voltages are passed through a pre-amp, low-pass filter, and then a variable gain 

stage before entering a computer. The computer parses them through the Audacity audio 

program, where they are then exported as .flac files. Each pulse in the file is a detection event. 
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 With this setup, we can capture a range of cell counts from densities of 102 cells/mL up to 

105 cells/mL. This range is capped by a pileup which occurs when the detector fails to discretize 

individual light pulses due to high cell density. However, the range still easily captures the lag-

log transition phase and allows us to measure it with high accuracy. 

We use MATLAB to analyze and reduce the data obtained from the assay. Our data is in 

the form of .flac audio files, which can be processed by the audioread function, which returns an 

audio data array and an integer representing the sampling rate. Each column in the audio data 

array is representative of an audio channel; in our case, the first audio channel contains all of our 

data. The unmodified behavior of audioread for .flac files results in data represented as type 

uint8. Therefore, the data will be normalized to be between 0 and 255. Once the audio data array 

is in the workspace, the function findpeaks can be used to find local maxima within the data. The 

use of this function was suggested by Zijin Huang. The function returns the location and height 

of each maximum point that it finds as a vector. The behavior of the function can be modified 

with name-value pairs. We wanted to select for peaks that were generated by objects passing 

through the laser volume, and not background noise. However, we didn’t want to use a simple 

peak height requirement, because we wanted to track even small objects which generate small 

peaks. Therefore, we decided to use and tune MinimumPeakProminence modifier. This modifier 

measures the prominence of a peak, which is a measure of how much a peak stands out from 

nearby peaks. Prominence is determined from both intrinsic peak height and location relative to 

neighboring peaks. By setting the correct prominence threshold, we will still measure isolated 

low peaks, but not the constant stochasticity throughout the audio file. 

A further challenge in the analysis of our audio files was their size. When attempting to 

use the audio reading function provided by MATLAB on our multi-hundred-hour audio files, a 

typical computer would run into memory bounds. To circumvent this, a variety of techniques 

from MATLAB’s big data toolbox were employed. The novel program reads and analyzes 30 

minute sections of the audio file, and saves each analysis as a MATLAB file, removing it from 

working memory. From there, the files are all collected into a FileDataStore using a custom file 

reading function. From there, the program creates a ‘tall’ array on top of the datastore. Tall 

arrays are used to work with out-of-memory data and can be arbitrarily large in the first 

dimension. They allow common functions such as mean, std, and histogram to be used on 

massive data sets, and are the method employed to greatly simplify data analysis. 

Cell Culture 

 Cell culturing followed standard shaker culture protocols (5). Agar plates inoculated with 

AX4, a common axenic strain of Dictyostelium discoideum was received from Northwestern 

University Dicty Stock Center. The cells were plated into 2 mL of HL5 culture media in a 25 

mm diameter Falcon dish. The dishes were then sealed with parafilm. From there, cells were 

monitored and allowed to proliferate to a density of about 1E04 cells per milliliter. The cells 

were then transferred to 50 mL Falcon tubes with an additional 3 mL of HL5 culture media. The 

Falcon tubes were placed on an orbital shaker. Cells are continuously monitored and split into 

new 50 mL Falcon tubes when reaching a density of about 1E07 cells per milliliter. 

Manual Cell Counting 

 When manually counting cells, standard Nageotte and Neubauer hemocytometer counting 

techniques were used (8). Pipettes and counting chambers were sterilized with a 65% by volume 
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mixture of isopropyl alcohol with water. Before pipetting, Falcon tubes were agitated to suspend 

cells from the bottom of the culture media. 

Colloidal sample preparation 

 Colloidal samples were measured by the OCPC assay to obtain the frequency response of 

the system with a standard set of particles. To prepare a colloidal sample, 10-micron Polybead 

polystyrene microspheres (Cat#17136) was vortexed and sonicated until well mixed. Then, one 

drop was added to 10 mL distilled water in a 15 mL Falcon tube. The colloid density was 

measured with a hemocytometer. The sample was then diluted to 1E04 colloids/mL in 50 mL 

falcon tubes full of distilled water. These were the mixtures measured by the OCPC assay. 

Results 

 The MATLAB code was run on a sample which was inoculated at 100 cells/mL and 

allowed to run in the OCPC apparatus for 115 hours. This data was collected by Zijin Huang, 

Christopher Donohue, Reiley Dorian, and Carl Franck. The code generated Figures 1 and 2, 

allowing for new statistical analyses to be made from previously collected data. Figures 1a, b, 

and c show pulse height histograms at varying points during the cell growth cycle. There is a 

clear trend of decreasing mean and standard deviation of pulse heights over time. Figure 1d, the 

colloidal sample, shows a pulse height histogram of 10-micron polystyrene colloidal particles in 

suspension. Notably, the standard deviation of pulses in Figure 1d is lower than the standard 

deviation of any other point in the analysis. The analyses of live cells show a clear skew to the 

right end of the distribution, with skew values consistently greater than 1. This trend is not seen 

as clearly in the relatively symmetrical colloidal sample, which has a skew value much closer to 

1. Figure 2 shows cell density over an entire run. Each point in figure 2 represents the number of 

pulses in the last 300 seconds, with the color representing the average pulse height over that time 

in arbitrary units. There is a very pronounced initial sudden rise in cell density, a long lag phase, 

and a clear exponential phase. 

Discussion 

Efficacy of the OCPC assay was shown with an analysis of colloidal mixtures. The 

standard deviation of pulse heights observed in the colloidal mixture was a factor of 3 lower than 

the next lowest standard deviation in the cellular samples. This is indicative of a relationship 

between particle size and pulse height. The pulse height distribution resulting from the colloidal 

sample is highly uniform because colloids are uniform in size. We would expect cells to be less 

uniform in size (either due to variations in single cells or clustering), so they should have a larger 

standard deviation, which is exactly what is observed. This difference in standard deviations 

between colloidal and live samples is therefore a promising verification of the OCPC assay’s 

ability to relate particle size with pulse height. 

The skew of the live samples is indicative of a distribution leaning towards larger peak 

heights than average. If higher peaks are truly indicative of larger particles, then larger than 

average objects are being detected by the laser in live samples. This is the opposite of the skew 

behavior in the colloidal sample, which is nearly symmetrical, indicative of a uniform 

distribution in both directions from the mean particle size.  

The most perplexing results of our new data analysis method lie in the mean pulse 

heights over time of the sample. Promising mathematical models of D. discoideum proliferation 
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dynamics have focused on cell clustering. The two best performing models include the cluster-

sourced endocrine signaling mechanism, where a growth factor produced by cell clusters is 

evenly spread throughout the media, and the paracrine signaling mechanism, where cells within 

the same cluster exchange growth factors. Both models predict that the number of cells in 

clusters should increase over time. Therefore, he preliminary results presented in this paper are 

opposite to expectations derived from mathematical signaling models.  

Conclusion 

 The new MATLAB code is a powerful tool for pulse height analysis of data generated 

from the OCPC apparatus. The efficacy of the code was verified through the analysis of a 

colloidal sample, which showed a significantly lower standard deviation than the live samples. 

The smaller pulse height distribution around the mean for the colloidal sample as compared to 

the distribution around the mean for the live cells is indicative of a relationship between pulse 

height and particle size. The code can therefore be used to visualize particle density and size 

distributions over time. The new analysis provides evidence that particle size decreases over 

time, especially by the time the exponential phase is reached. This is a surprising preliminary 

result that casts doubt on the ability of presented clustering models to explain the behavior of D. 

discoideum throughout the lag-log transition. 

Figures 

 

22



Figure 1. Normalized pulse height frequency distributions. These histograms were 

generated from the new MATLAB pipeline. They were normalized by taking the total number of 

observations in each bin and dividing that by the total number of observations multiplied by the 

width of the bin. The area of each bar is the relative number of observations, and the sum of the 

bar areas is equal to one. Each histogram represents the pulse height distribution and statistical 

information of data collected from the OCPC assay. a) Results for the first 15 hours of a sample 

cell starting at 100 cells/mL. b) Results for the middle 15 hours of the run started in figure 1a. c) 

Results for the last 15 hours of the run started in figure 1a.  d) Results for a 10-minute run of a 

sample of 10-micron polystyrene colloids. 

 

 

Figure 2. Plot of cell culture over 115 hours starting from low cell density. The plot was generated 

with new MATLAB method. Each point on the plot represents the number of pulses over the past 300 seconds 

before that point. The color of the point is indicative of the pulse height; where lighter blue is a higher average 

pulse height over the last 300 seconds, and darker blue is a lower average pulse height over that time.  
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Figure 3. Optical Cell Passage Counting Apparatus (From reference 7). Schematic 

(not to scale) diagram showing important components and signal processing chain of our 

automated cell counting system for observing a stirred suspension culture.  
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